

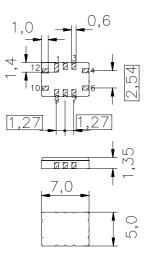
SAW Components

Preliminary Data Sheet B3844

SAW Components B3844

Low-Loss Filter 423,25 MHz

Preliminary Data Sheet


Features

- Low-loss filter
- Temperature stable
- Package for Surface Mounted Technology (SMT)
- Hermetically sealed ceramic package

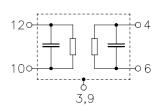
Terminals

Gold-plated

Ceramic package QCC12B

Dimensions in mm, approx.

Pin configuration


10 Input

12 Input ground or bal. input

4 Output

6 Output ground or bal. output

1, 2, 3, 7, 8, 9 To be grounded

Туре	Ordering code	Marking and Package	Packing		
		according to	according to		
B3844	B39421B3844Z910	C61157A0007A052	F61074V8038Z000		

Electrostatic Sensitive Device (ESD)

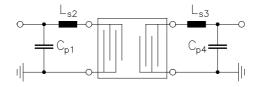
Maximum ratings

Operable temperature range	Τ	- 45/+ 85	°C	
Storage temperature range	$T_{\rm stg}$	- 40/+ 85	°C	
DC voltage	$V_{\rm DC}$	0	V	
Source power	P_{s}	10	dBm	source impedance 75 Ω

SAW Components B3844

423,25 MHz **Low-Loss Filter**

Preliminary Data Sheet


Characteristics

T = -40 ... +85 °COperating temperature:

 $Z_{\rm S}$ = 75 Ω and matching network $Z_{\rm L}$ = 75 Ω and matching network Terminating source impedance: Terminating load impedance:

		min.	typ.	max.	
Nominal frequency	f _N	_	423,25	_	MHz
Insertion attenuation at f_N (T=25 °C)	α_{N}	4,5	5,7	7,5	dB
Variation of insertion att. (rel. to $\alpha_{\text{N}})$	α_{rel}	_	_	±0,9	dB
Frequency response					
3 dB Lower frequency	f _{L 3dB}	_	422,27	422,75	MHz
3 dB Upper frequency	f _{U 3dB}	423,75	424,23	_	MHz
35 dB Lower frequency	f _{L35dB}	420,25	420,75	_	MHz
35 dB Upper frequency	f _{U35dB}	_	425,85	426,25	MHz
Amplitude ripple (peak to adjacent valley)					
$f_{\rm N} \pm 100~{ m kHz}$		_	0,3	0,5	dB
Relative attenuation	$lpha_{rel}$				
f _N - 200,0 MHz f _N - 10,0 MHz		40	55	_	dB
$f_{\rm N}$ - 10,0 MHz $f_{\rm N}$ - 3,0 MHz		35	41	_	dB
$f_{\rm N}$ + 3,0 MHz $f_{\rm N}$ + 10,0 MHz		35	43	_	dB
$f_{\rm N}$ + 10,0 MHz $f_{\rm N}$ + 200,0 MHz		40	48	_	dB
Temperature coefficient of frequency 1)	TC _f	_	- 0,036	_	ppm/K ²
Turnover temperature	T_0	_	25	_	°C

Matching circuit:

$$C_{p1} = 12 \text{ pF}^{2}$$

 $L_{s2} = 22 \text{ nH}^{2}$
 $L_{s3} = 18 \text{ nH}^{2}$

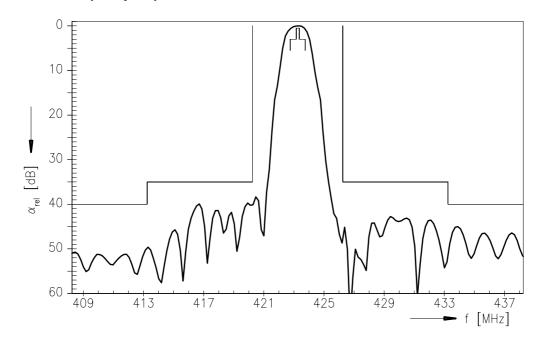
$$L_{22} = 22 \text{ nH}^{-2}$$

$$L_{22} = 18 \text{ nH}^{-2}$$

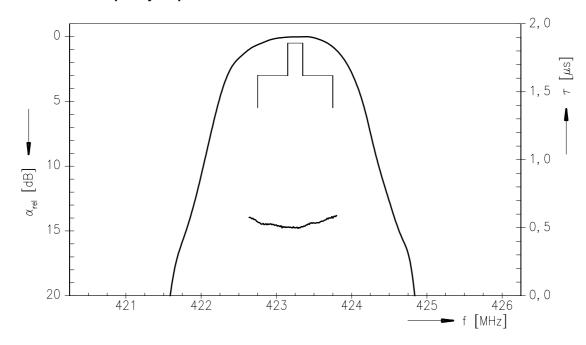
$$C_{p4} = 10 \text{ pF}^{2}$$

 $^{^{1)}}$ Temperature dependance of $f_{\rm c}$: $f_{\rm c}(T_{\rm A}) = f_{\rm c}(T_0)(1 + TC_{\rm f}(T_{\rm A} - T_0)^2)$

²⁾ Element values depend on PCB layout



SAW Components B3844


Low-Loss Filter 423,25 MHz

Preliminary Data Sheet

Normalized frequency response

Normalized frequency response

SAW Components B3844

Low-Loss Filter 423,25 MHz

Preliminary Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC IS, P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2002. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.