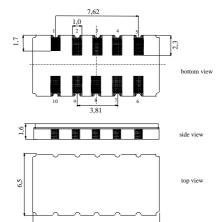


SAW Components

Data Sheet B3861

SAW Components B3861
Bandpass Filter 250,0 MHz

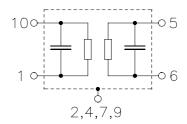

Data Sheet

Features

- IF filter for W-CDMA base station
- Usable bandwidth 4,0 MHz
- Temperature stable
- Ceramic SMD package

Terminals

Gold plated


Ceramic package DCC12A

Dimensions in mm, appr. weight 0,4 g

Pin configuration

10	Input
1	Input ground
5	Output
6	Output ground
2, 4, 7, 9	Case ground
3, 8	To be grounded

Output
Output ground
Case ground
To be grounded

Туре	Ordering code	Marking and Package according to	Packing according to
B3861	B39251-B3861-H510	C61157-A7-A94	F61074-V8163-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T_{A}	-40 / +85	°C
Storage temperature range	$T_{\rm stg}$	-40 / +85	°C
DC voltage	$V_{\rm DC}$	0	V
Source power (average)	P_{s}	10	dBm
(peak < 10ns)		20	dBm

SAW Components B3861

250,0 MHz **Bandpass Filter**

Data Sheet

Characteristics

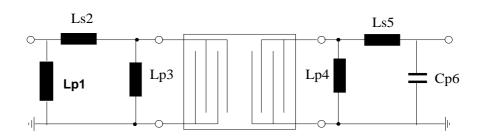
Operating temperature:

 $T_{\rm A} = -10 \dots +85 \,^{\circ}{\rm C}$ $Z_{\rm S} = 50 \,\Omega$ and matching network $Z_{\rm L} = 50 \,\Omega$ and matching network Terminating source impedance: Terminating load impedance:

Group delay aperture: 125 kHz

			min.	typ.	max.	
Nominal frequency		f_{N}	_	250,0	_	MHz
Maximum insertion attenuation in passband ¹⁾ (including matching network)		α_{max}	_	16,3	19,0	dB
Passband width						
	$\alpha_{rel} \le 1 dB$	B_{1dB}	4,0	4,2	_	MHz
Amplitude ripple (p-p)	$f_{\rm N} \pm 2.0~{ m MHz}$	Δα	_	0,5	1,0	dB
Group delay ripple (p-p)	$f_{\rm N}\pm 2.0~{ m MHz}$	Δτ	_	120	150	ns
Relative attenuation (relat	ive to α_{fN})	α_{rel}				
f _N ± 3,0 MHz f	f _N ± 3,5 MHz	101	11	15	_	dB
f _N ± 3,5 MHz f	$f_{\rm N} \pm 4.0~{ m MHz}$		21	35	_	dB
$f_N \pm 4.0$ MHz f	$f_N \pm 6.0 \text{ MHz}$		24	35	_	dB
f _N + 6,0 MHz f	f _N + 12,5 MHz		40	45	_	dB
f _N + 12,5 MHz f	f _N + 14,3 MHz		54	57	_	dB
f _N + 13,4 MHz			54	65	_	dB
f _N + 14,3 MHz f	· ·		40	47	_	dB
f _N + 24,6 MHz f	• •		54	57	_	dB
0,1 MHz 2	244 MHz		40	50	_	dB
279 MHz 2	2,5 GHz		30	40		
VSWR	$f_{\rm N} \pm 2.0~{\rm MHz}$		_	1,5:1	2:1	

¹⁾ matched with coilcraft CS0805 inductors


SAW Components	B3861
Bandpass Filter	250,0 MHz

Data Sheet

		min.	typ.	max.	
Impedance at f _N (without matching)					
Input: $Z_{IN} = R_{IN} \parallel C_{IN}$		_	2,3 4,1 1,3 12,2	_	$k\Omega \parallel pF$
Output: $Z_{OUT} = R_{OUT} C_{OUT}$		_	1,3 12,2	_	kΩ pF
Temperature coefficient of frequency ²⁾	TC _f		- 0,036	_	ppm/K ²
Turnover temperature	T_0	_	17	_	°C

²⁾ Temperature dependance of f_c : $f_c(T_A) = f_c(T_0)(1 + TC_f(T_A - T_0)^2)$

Matching network to 50 Ω (element values depend on pcb layout)

$$L_{p1} = 27 \text{ nH}$$

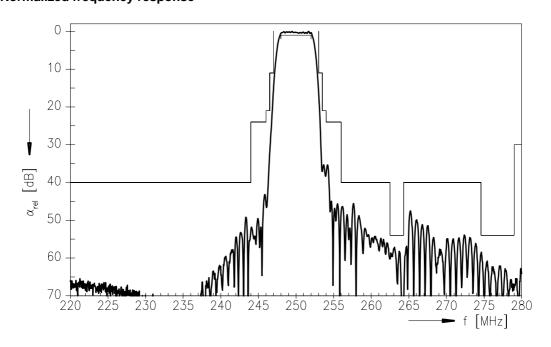
 $L_{s2} = 120 \text{ nH}$

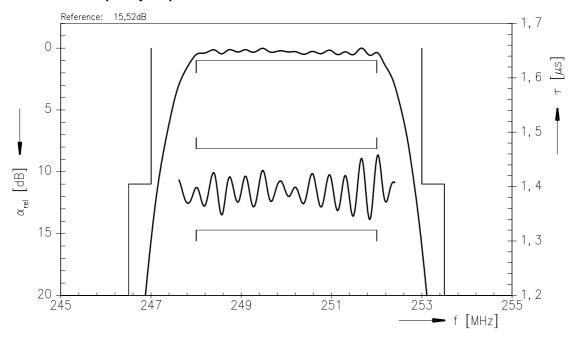
$$L_{s2} = 120 \text{ nH}$$

 $L_{p3} = 100 \text{ nH}$

$$L_{p4} = 33 \text{ nH}$$

$$L_{s5} = 120 \text{ nH}$$


$$C_{p6} = 2.7 \text{ pF}$$


SAW Components B3861
Bandpass Filter 250,0 MHz

Data Sheet

Normalized frequency response

Normalized frequency response

SAW Components B3861

Bandpass Filter 250,0 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC IS P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2002. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.