

N- and P-Channel 40-V (D-S) MOSFET

General Description

The B3965D is the N- and P-Channel logic enhancement mode power field effect transistors are produced using high cell density, DMOS trench technology. This high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage application such as cellular phone and notebook computer power management and other battery powered circuits with high-side switching, and low in-line power loss are needed in a very small outline surface mount package.

Pin Configuration

Features

- 40V/5.2A, $R_{DS(ON)}=40m\Omega@V_{GS}=10V$ (N-Ch)
- 40V/4.9A, R_{DS(ON)}=45mΩ@V_{GS}=4.5V (N-Ch)
- -40V/-4.5A, $R_{DS(ON)}$ =54mΩ@V_{GS}=-10V (P-Ch)
- -40V/-3.9A, R_{DS(ON)}=72mΩ@V_{GS}=-4.5V (P-Ch)
- Super High Density Cell Design For Extremely Low R_{DS(ON)}
- Exceptional On-Resistance and Maximum DC Current Capability
- TO-252 Package

Applications

- Power Management in Note book
- Portable Equipment
- Battery Powered System
- DC/DC Converter
- Load Switch
- LCD Display inverter

Absolute Maximum Ratings (TA=25°C Unless Otherwise Noted):

Parameter		Symbol	N-Channel		P-Channel		Unit
Drain-Source Voltage		V_{DSS}	30		-30		V
Gate-Source Voltage		V_{GSS}	±20		±20		٧
Continuous Drain	TA=25°C	Ι _D	6.9		-6.1		Α
Current(tJ=150°C)	TA=70°C		5.5		-4.9		
Pulsed Drain Current		I _{DM}	30		-30		Α
Continuous Source Current (Diode Conduction)		Is	1.7		-1.7		Α
Avalanche Energy with Single Pulse(L=0.1mH)		E _{AS}	10		20		mJ
Maximum Power Dissipation	TA=25°C	В	2.0				W
	TA=70°C	P _D	1.3				
Operating Junction Temperature		TJ	-55 to 150				$^{\circ}\mathbb{C}$
Thermal Resistance-Junction to Ambient*		RθJA	Steady	75	Steady	65	°C/W
			10sec	47	10sec	35	
Thermal Resistance-Junction to Case		RθJC	44		30		°C/W