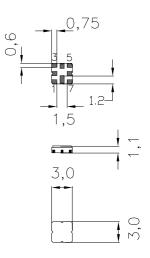


SAW Components

Data Sheet B4067

SAW Components	B4067
Low-Loss Filter	810,0 MHz

Data Sheet


SMD ceramic package QCC8D

Features

- Low loss IF filter for HiperLAN
- Balanced to balanced operation
- Package for Surface Mounted Technology (SMT)

Terminals

Ni, gold-plated



Dimensions in mm, approx. weight 0,037 g

Pin configuration

1		ln	pu	t

- 2 Input
- 5 Output
- 6 Output
- 3, 7 To be grounded
- 4, 8 Case ground

Туре	Ordering code	Marking and Package	Packing
		according to	according to
B4067	B39811-B4067-U810	C61157-A7-A72	F61074-V8101-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	- 40/ + 85	°C	
Storage temperature range	$T_{\rm stg}$	- 40/+ 85	°C	
DC voltage	$V_{\rm DC}$	0	V	
Source power	P_{s}	0	dBm	source impedance 200 Ω

SAW Components B4067

Low-Loss Filter 810,0 MHz

Data Sheet

Characteristics

Operating temperature range: $T_A = 0 \dots +70 \,^{\circ} \text{C}$ Terminating source impedance: $Z_S = 200 \,\Omega$ Terminating load impedance: $Z_L = 200 \,\Omega$

			min.	typ.	max.	
Nominal frequency		f _N	_	810,0		MHz
Minimum insertion attenuation	1	α_{min}	_	1,7	4,0	dB
Amplitude ripple in passband (p-p)		Δα				
	$f_{\rm N}$ ± 8,0 MHz		_	0,6	1,0	dB
	$f_{\rm N}$ ± 8,5 MHz		_	0,7	1,2	dB
Group delay ripple (p-p)		Δau				
	$f_{\rm N}$ ± 8,5 MHz		_	25	75	ns
Relative attenuation (relative to α_{min})		α_{rel}				
	<i>f</i> _N – 20,0 MHz		15,5	36	_	dB
	$f_{\rm N}$ + 20,0 MHz		15,5	24	_	dB
	<i>f</i> _N − 40,0 MHz		23	54	_	dB
	$f_{\rm N} + 40,0 \; {\rm MHz}$		23	48	_	dB
$f_{\rm N}$ – 500 MHz $f_{\rm N}$ – 50,0 MHz			45	54	_	dB
$f_{\rm N} + 50,0 {\rm MHz}$.	$f_{N} + 500 \text{MHz}$		45	58	_	dB
Reflected wave signal suppres	sion					
450 ns	after main pulse	:	46,0	48,0	<u> </u>	dB

SAW Components B4067

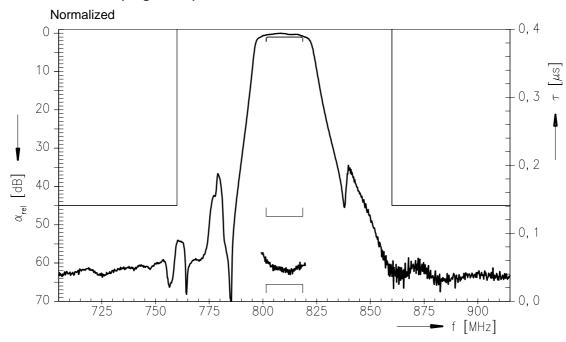
Low-Loss Filter 810,0 MHz

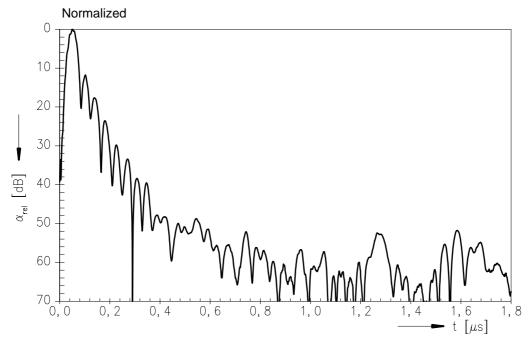
Data Sheet

Characteristics (2 filters cascaded)

Operating temperature range: $T_{\rm A}=0...+70\,^{\circ}{\rm C}$ Terminating source impedance: $Z_{\rm S}=200\,\Omega$ Terminating load impedance: $Z_{\rm L}=200\,\Omega$

		min.	typ.	max.	
Nominal frequency	f_{N}	_	810,0	_	MHz
Minimum insertion attenuation	α_{min}	_	3,4	8,0	dB
Amplitude ripple in passband (p-p)					
$f_{\rm N} \pm 8.0~{\rm MHz}$			1,2	2,0	dB
$f_{\rm N} \pm 8,5~{ m MHz}$		_	1,8	2,4	dB
Group delay ripple (p-p)	Δau				
$f_{N} \pm 8,5 \; MHz$			50	150	ns
Relative attenuation (relative to α_{min})	α_{rel}				
$f_{\rm N} - 20,0 \; {\rm MHz}$		31	60	_	dB
$f_{\rm N}$ + 20,0 MHz		31	48	_	dB
$f_{\rm N} - 40,0 \; {\rm MHz}$		46	108 *)	_	dB
$f_{\rm N} + 40,0 \; {\rm MHz}$		46	96 *)		dB
$f_{\rm N}$ – 500 MHz $f_{\rm N}$ – 50,0 MHz		90	108 *)	_	dB
$f_{\rm N}$ + 50,0 MHz $f_{\rm N}$ + 500 MHz		90	116 *)		dB
Reflected wave signal suppression					
900 ns after main puls	е	46,0	48,0	_	dB
Reflected wave signal suppression	e	46,0	,	_	

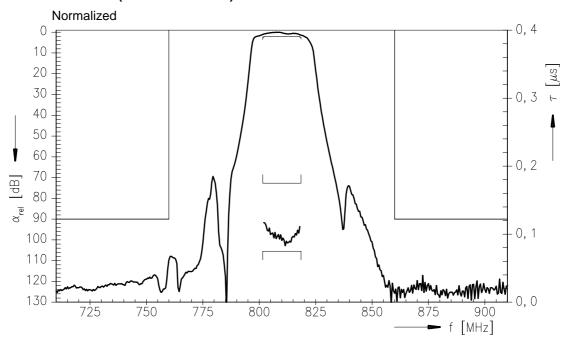

^{*)} value depends on pcb layout

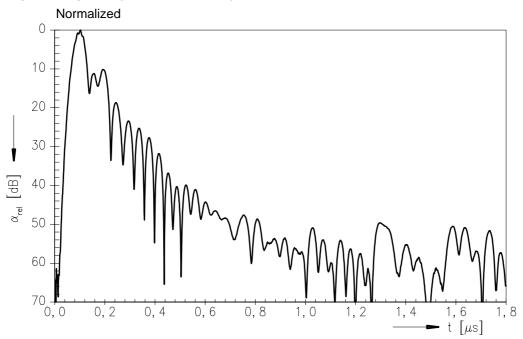

SAW Components B4067
Low-Loss Filter 810,0 MHz

Data Sheet

Transfer function (single filter)

Impulse response (single filter)




SAW Components B4067
Low-Loss Filter 810,0 MHz

Data Sheet

Transfer function (2 cascaded filters)

Impulse response (2 cascaded filters)

SAW Components B4067
Low-Loss Filter 810,0 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC WT P.O. Box 80 17 09, D-81617 München

© EPCOS AG 2002. All Rights Reserved. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

The information contained in this brochure describes the type of component and shall not be considered as guaranteed characteristics. Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.