

Aluminum electrolytic capacitors

Single-ended capacitors

Series/Type: B41858 Date: December 2006

 \odot EPCOS AG 2007. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

Single-ended capacitors

Low impedance - 105 °C

Long-life grade capacitors for professional applications

Applications

- For use in output circuits of switch-mode power supplies of compact design
- For professional industrial electronics, telecommunications and data processing equipment
- Automotive electronics

Features

- Low impedance at high frequency
- Low ESR
- High ripple current capability
- High reliability and long useful life
- Wide temperature range

Construction


- Radial leads
- Charge-discharge proof, polar
- Aluminum case with insulating sleeve
- Minus pole marking on the insulating sleeve
- Case with safety vent

Delivery mode

Terminal configurations and packing:

- Bulk
- Taped, Ammo pack
- Cut
- Kinked
- PAPR (protection against polarity reversal): crimped leads, J leads, bent leads

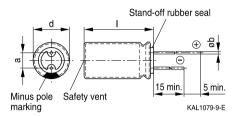
Refer to chapter "Single-ended capacitors – Taping, packing and lead configurations" for further details and ordering example.

B41858

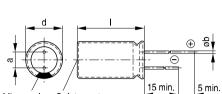
B41858

Specifications and characteristics in brief

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c} \hline & & & & & & & & & & & & & & & & & & $
$ \begin{array}{c c} \mbox{Capacitance tolerance} & \pm 20\% \triangleq M \\ \hline \mbox{Dissipation factor tan } \delta \\ (20\ ^{\circ}\mbox{C},\ 120\ \mbox{Hz}) & & \\ \hline \mbox{For capacitance higher than 1000 μF} \ add \ 0.02 \ \mbox{for every increase of 1000 μF} \\ \hline \mbox{Hz} & & \\ \hline \mbox{V}_R \ (V\ \mbox{DC}) & 10 & 16 & 25 & 35 & 50 & 63 & 80 & 100 \\ \hline \mbox{tan } \delta \ (max.) & 0.19 & 0.16 & 0.14 & 0.12 & 0.10 & 0.10 & 0.0 \\ \hline \mbox{Leakage current I_{leak}} & & \\ \mbox{(20\ ^{\circ}\mbox{C},\ 5\ min)} & & \\ \hline \mbox{I}_{leak} = 0.03\ \mbox{μA} \ \cdot \left(\frac{C_R}{\mbox{μF}} \ \cdot \frac{V_R}{\mbox{V}}\right) + 15\ \mbox{μA} \\ \hline \mbox{Hz} & & \\ \hline \mbox{Hz} &$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$(20 \ ^{\circ}\text{C}, \ 120 \ \text{Hz}) \\ \hline \begin{array}{c} 1000 \ \mu\text{F}. \\ \hline V_{\text{R}} \ (\text{V} \ \text{DC}) & 10 & 16 & 25 & 35 & 50 & 63 & 80 & 100 \\ \hline tan \ \delta \ (\text{max.}) & 0.19 & 0.16 & 0.14 & 0.12 & 0.10 & 0.10 & 0.0 \\ \hline \text{Leakage current } I_{\text{leak}} \\ (20 \ ^{\circ}\text{C}, \ 5 \ \text{min}) \end{array} \\ \hline \begin{array}{c} I_{\text{leak}} = \ 0.03 \ \mu\text{A} \ \cdot \left(\frac{C_{\text{R}}}{\mu\text{F}} \ \cdot \ \frac{V_{\text{R}}}{V} \right) + 15 \ \mu\text{A} \end{array}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\frac{\tan \delta \text{ (max.)}}{(20 ^{\circ}\text{C}, 5 \text{min})} = \frac{1}{1600} \frac{1}{1600} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$
Leakage current I _{leak} (20 °C, 5 min) $I_{leak} = 0.03 \mu\text{A} \cdot \left(\frac{C_R}{\mu\text{F}} \cdot \frac{V_R}{V}\right) + 15 \mu\text{A}$
Self-inductance ESL Diameter (mm) 8 12.5 16 18
ESL (nH) 20 26 34
Useful life
105 °C, V _R , I _{AC,R} > 3000 h for d = 8 mm
$105 {}^{\circ}\text{C}, V_{\text{R}}, I_{\text{AC},\text{R}} > 5000 \text{h for d} \ge 10 \text{mm}$
Requirements $\Delta C/C \le \pm 40\%$ of initial value
tan $\delta \leq 3$ times initial specified limit
I _{leak} ≤ initial specified limit
Voltage endurance test
105 °C, V _B 3000 h for d = 8 mm
5000 h for $d \ge 10 \text{ mm}$
Post test requirements $\Delta C/C \leq \pm 30\%$ of initial value
tan $\delta \leq 2$ times initial specified limit
I _{leak} ≤ initial specified limit
Vibration resistance test To IEC 60068-2-6, test Fc:
Displacement amplitude 0.75 mm, frequency range 10 2000 Hz,
acceleration max. 20 g , duration 3×2 h.
Capacitor rigidly clamped by the aluminum case.
IEC climatic category To IEC 60068-1:
55/105/56 (-55 °C/+105 °C/56 days damp heat test)
Sectional specification IEC 60384-4



Low impedance - 105 °C


Dimensional drawings

With stand-off rubber seal

Diameters (mm): 8, 10, 12.5, 16, 18

With flat rubber seal Diameter (mm): 8

Minus pole Safety vent marking

KAL1080-C-E

Dimensions and weights

Dimensions (I	mm)			Approx. weight
d +0.5	1	a ±0.5	b	g
8	11.5 +1.5	3.5	0.60 ±0.05	1.0
10	12.5 +1.0	5.0	0.60 ±0.05	1.6
10	16 +1.0	5.0	0.60 ±0.05	1.9
10	20 +2.0	5.0	0.60 ±0.05	2.6
12.5	20 +2.0	5.0	0.60 ±0.05	3.6
12.5	25 +2.0	5.0	0.60 ±0.05	4.5
12.5	30 +2.0	5.0	0.80 ±0.05	5.3
12.5	40 +2.0	5.0	0.80 ±0.05	7.4
16	20 +2.0	7.5	0.80 ±0.05	5.5
16	25 +2.0	7.5	0.80 ±0.05	7.5
16	31.5 +2.0	7.5	0.80 ±0.05	7.8
18	20 +2.0	7.5	0.80 ±0.1	8.0
18	25 +2.0	7.5	0.80 ±0.1	9.0
18	31.5 +2.0	7.5	0.80 ±0.1	11.0
18	35 +2.0	7.5	0.80 ±0.1	13.0
18	40 +2.0	7.5	0.80 ±0.1	16.0

B41858

Overview of available types

V _R (V DC)	10	16	25	35
	Case dimension	s d × l (mm)		
C _R (μF)				
120				8 × 11.5
180			8 × 11.5	10 × 12.5
220			8 × 11.5	10 × 12.5
270		8 × 11.5		
330	8 × 11.5	8 × 11.5	10 × 12.5	10 × 16
390	8 × 11.5			
470	8 × 11.5	10 × 12.5	10 × 16	10 ×20
560	10 × 12.5			10 × 20
680	10 × 12.5	10 × 16		12.5 × 20
820	10 × 16		10 × 20	
1000	10 × 16	10 × 20	12.5 × 20	12.5 × 25
1200		10 × 20		16 × 20
1500		12.5 × 20	12.5 × 25	12.5 × 40
				16 × 25
1800	10 × 20	12.5×25	16 × 20	16 × 31.5
				18 × 20
2200	12.5×20	12.5×25	12.5 × 40	18 × 25
0700	40.5 05	40.00	16 × 25	40 04 5
2700	12.5 × 25	16 ×20	16 × 31.5 18 × 20	18 × 31.5
3300	12.5 × 25	12.5 × 40	18 × 20	18 × 35
3300	12.5 × 25 16 × 20	12.5 × 40 16 × 25	10 × 25	10 × 35
3900	12.5 × 40	16 × 31.5	18 × 31.5	
	16 × 20	18 × 20		
4700	18 × 20	18 × 25	18 × 35	18 × 40
5600	12.5 × 40		18 × 40	
6800	16 × 31.5	18 × 31.5		
8200	18 × 31.5	18 × 35		
10000	18 × 35	18 × 40		
12000	18 × 40			

Low impedance - 105 °C

V _R (V DC)	50	63	80	100
	Case dimension	s d $ imes$ l (mm)		
C _R (μF)				
22				8 × 11.5
27				10 × 12.5
33			8 × 11.5	10 × 16
39			10 × 12.5	
56		8 × 11.5	10 × 16	10 × 20
82	8 × 11.5	10 × 12.5	10 × 20	
100	8 × 11.5			12.5 × 20
120	10 × 12.5	10 × 16		12.5 × 25
150			12.5 × 20	
180	10 × 16	10 × 20	12.5 × 25	12.5 × 30
				16 × 20
220				16 × 25
270		12.5×20	12.5 imes 30	12.5 imes 40
			16 × 20	18 × 20
330	10 ×20	12.5 imes 20	16 × 25	16 × 31.5
				18 × 25
390		12.5×25	12.5 × 40	18 × 31.5
			18 × 20	
470	12.5 × 20	16 × 20	16 × 31.5	
560	12.5 × 25		18 × 25	18 × 35
		40.5 40	40 04 5	
680	12.5 × 30	12.5×40 16 × 25	18 × 31.5	18 × 40
		18 × 20		
820	12.5 × 40	16 × 31.5	18 × 35	
020	16 × 20	18 × 25		
1000	16 × 31.5		18 × 40	
	18 × 20			
1200		18 × 31.5		
1500	18 × 25	18 × 35		
1800	18 × 31.5	18 × 40		
2200	18 × 35			
2700	18 × 40			

Other voltage and capacitance ratings are available upon request.

B41858

Technical data and ordering codes

	<u> </u>				-				
C _R	Case	ESR _{max}	ESR_{max}	ESR_{max}	Z _{max}	I _{AC,R}	I _{AC,max}	Ordering code	
120 Hz	dimensions	10 kHz	120 Hz	10 kHz	100 kHz	100 kHz	100 kHz	(composition see	
20 °C	d×l	−40 °C	20 °C	20 °C	20 °C	105 °C	85 °C	below)	
μF	mm	Ω	Ω	Ω	Ω	mA	mA		
$V_{R} = 10$	V DC								
330	8 × 11.5	2.195	0.727	0.274	0.246	436	654	B41858C3337M***	
390	8 ×11.5	2.195	0.615	0.274	0.246	436	654	B41858C3397M***	
470	8 ×11.5	2.195	0.511	0.274	0.246	436	654	B41858C3477M***	
560	10 × 12.5	1.035	0.429	0.129	0.113	746	1118	B41858C3567M***	
680	10 × 12.5	1.035	0.353	0.129	0.113	746	1118	B41858C3687M***	
820	10 ×16	0.946	0.293	0.118	0.105	846	1269	B41858C3827M***	
1000	10 ×16	0.946	0.240	0.118	0.105	846	1269	B41858C3108M***	
1800	10 ×20	0.584	0.133	0.073	0.062	1202	1803	B41858C3188M***	
2200	12.5×20	0.496	0.121	0.062	0.060	1396	2094	B41858C3228M***	
2700	12.5×25	0.327	0.098	0.041	0.034	2028	3043	B41858C3278M***	
3300			0.088	0.041	0.034	2028	3043	B41858C3338M***	
3300	16 ×20	0.307	0.088	0.038	0.033	2146	3219	B41858D3338M***	
3900	12.5 imes 40	0.243	0.074	0.030	0.025	2858 4286		B41858C3398M***	
3900	16 ×20	0.307	0.074	0.038	0.033	2146	3219	B41858D3398M***	
4700	18 ×20	0.271	0.067	0.034	0.031	2381	3571	B41858C3478M***	
5600	12.5×40	0.243	0.061	0.030	0.025	2858	4286	B41858C3568M***	
6800	16 × 31.5	0.192	0.054	0.024	0.022	3122	4683	B41858C3688M***	
8200	18 × 31.5	0.165	0.051	0.021	0.020	3539	5308	B41858C3828M***	
10000	18 ×35	0.160	0.047	0.020	0.018	3864	5796	B41858C3109M***	
12000	18 ×40	0.125	0.043	0.016	0.015	4467	6700	B41858C3129M***	
V _R = 16	V DC								
270	8 × 11.5	1.200	0.749	0.150	0.134	590	885	B41858C4277M***	
330	8 ×11.5	1.200	0.612	0.150	0.134	590	885	B41858C4337M***	
470	10 × 12.5	1.035	0.430	0.129	0.113	746	1118	B41858C4477M***	
680	10 ×16	0.946	0.297	0.118	0.105	846	1269	B41858C4687M***	
1000	10 ×20	0.584	0.202	0.073	0.062	1202	1803	B41858C4108M***	
1200	10 ×20	0.584	0.168	0.073	0.062	1202	1803	B41858C4128M***	
1500	12.5 imes 20	0.496	0.135	0.062	0.060	1396	2094	B41858C4158M***	
	-				•			· · · · · · · · · · · · · · · · · · ·	

Composition of ordering code

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk (for $\emptyset \ge 10 \text{ mm}$)
- 002 = for cut leads, bulk (for $\emptyset \ge 10 \text{ mm}$)
- 003 = for crimped leads, blister (for $\emptyset \ge 16$ mm)
- 004 = for J leads, blister (from $d \times I = 10 \times 12.5$ mm to 18×35 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (from $d \times I = 8 \times 11.5$ mm to 12.5×25 mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (from $d \times I = 16 \times 20$ mm to 18×31.5 mm)
- 012 = for bent 90° leads, blister (for \emptyset 16 and 18 mm)

Low impedance - 105 °C

Technical data and ordering codes

C _R	Case	ESR _{max}	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	I _{AC,max}	Ordering code
120 Hz	dimensions	10 kHz	120 Hz	10 kHz	100 kHz	100 kHz	100 kHz	(composition see
20 °C	d×l	-40 °C	20 °C	20 °C	20 °C	105 °C	85 °C	below)
μF	mm	Ω	Ω	Ω	Ω	mA	mA	,
V _B = 16	V DC							1
1800	12.5×25	0.327	0.112	0.041	0.034	2028	3043	B41858C4188M***
2200	12.5×25	0.327	0.103	0.041	0.034	2028	3043	B41858C4228M***
2700	16 ×20	0.307	0.084	0.038	0.033	2146	3219	B41858C4278M***
3300	12.5 imes 40	0.243	0.077	0.030	0.025	2858	4286	B41858D4338M***
3300	16 ×25	0.251	0.077	0.031	0.029	2483	3724	B41858C4338M***
3900	16×31.5	0.192	0.065	0.024	0.022	3122	4683	B41858D4398M***
3900	18 ×20	0.271	0.065	0.034	0.031	2381	3571	B41858C4398M***
4700	18 ×25	0.217	0.059	0.027	0.024	2941	4412	B41858C4478M***
6800	18 ×31.5	0.165	0.048	0.021	0.020	3539	5308	B41858C4688M***
8200	18 ×35	0.160	0.046	0.020	0.018	3864	5796	B41858C4828M***
10000	18 ×40	0.125	0.043	0.016	0.015	4467	6700	B41858C4109M***
$V_{R} = 25$	V DC							
180	8 × 11.5	1.200	0.982	0.150	0.134	590	885	B41858C5187M***
220	8 ×11.5	1.200	0.804	0.150	0.134	590	885	B41858C5227M***
330	10 × 12.5	1.035	0.536	0.129	0.113	746	1118	B41858C5337M***
470	10 × 16	0.946	0.376	0.118	0.105	846	1269	B41858C5477M***
820	10 ×20	0.584	0.216	0.073	0.062	1202	1803	B41858C5827M***
1000	12.5 imes 20	0.496	0.177	0.062	0.060	1396	2094	B41858C5108M***
1500	12.5 imes 25	0.327	0.118	0.041	0.034	2028	3043	B41858C5158M***
1800	16 ×20	0.307	0.098	0.038	0.033	2146	3219	B41858C5188M***
2200	12.5 imes 40	0.243	0.092	0.030	0.025	2858	4286	B41858D5228M***
2200	16 ×25	0.251	0.092	0.031	0.029	2483	3724	B41858C5228M***
2700	16×31.5	0.192	0.075	0.024	0.022	3122	4683	B41858D5278M***
2700	18 ×20	0.271	0.075	0.034	0.031	2381	3571	B41858C5278M***
3300	18 ×25	0.217	0.069	0.027	0.024	2941	4412	B41858C5338M***
3900	18 ×31.5	0.165	0.058	0.021	0.020	3539	5308	B41858C5398M***
4700	18 ×35	0.160	0.054	0.020	0.018	3864	5796	B41858C5478M***
5600	18 × 40	0.125	0.050	0.016	0.015	4467	6700	B41858C5568M***

Composition of ordering code

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk (for $\emptyset \ge 10$ mm)
- 002 = for cut leads, bulk (for $\emptyset \ge 10$ mm)
- 003 = for crimped leads, blister (for $\emptyset \ge 16$ mm)
- 004 = for J leads, blister (from $d \times I = 10 \times 12.5$ mm to 18×35 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (from d \times l = 8 \times 11.5 mm to 12.5 \times 25 mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (from $d \times I = 16 \times 20$ mm to 18×31.5 mm)
- 012 = for bent 90° leads, blister (for \emptyset 16 and 18 mm)

B41858

Technical data and ordering codes

		505	505	505	-			
C _R	Case	ESR _{max}	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	AC,max	Ordering code
120 Hz	dimensions	10 kHz	120 Hz	10 kHz	100 kHz	100 kHz	100 kHz	(composition see
20 °C	d × I	−40 °C	20 °C	20 °C	20 °C	105 °C	85 °C	below)
μF	mm	Ω	Ω	Ω	Ω	mA	mA	
V _R = 35	V DC							
120	8 × 11.5	1.200	1.263	0.150	0.134	590	885	B41858C7127M***
180	10 × 12.5	1.035	0.842	0.129	0.113	746	1118	B41858C7187M***
220	10 × 12.5	1.035	0.689	0.129	0.113	746	1118	B41858C7227M***
330	10 × 16 0.9		0.459	0.118	0.105	846	1269	B41858C7337M***
470			0.323	0.073	0.062	1202	1803	B41858C7477M***
560	10 ×20	0.584	0.271	0.073	0.062	1202	1803	B41858C7567M***
680	12.5×20	0.496	0.223	0.062	0.060	1396	2094	B41858C7687M***
1000	12.5 imes 25	0.327	0.152	0.041	0.034	2028	3043	B41858C7108M***
1200	16 ×20	0.307	0.126	0.038	0.033	2146	3219	B41858C7128M***
1500	12.5×40	0.243	0.101	0.030	0.025	2858	4286	B41858D7158M***
1500	16 ×25	0.251	0.101	0.031	0.029	2483	3724	B41858C7158M***
1800	16 × 31.5	0.192	0.084	0.024	0.022	3122	4683	B41858D7188M***
1800	18 ×20	0.271	0.084	0.034	0.031	2381	3571	B41858C7188M***
2200	18 ×25	0.217	0.080	0.027	0.024	2941	4412	B41858C7228M***
2700	18 × 31.5	0.165	0.065	0.021	0.020	3539	5308	B41858C7278M***
3300	18 ×35	0.160	0.061	0.020	0.018	3864	5796	B41858C7338M***
4700	18 ×40	0.125	0.048	0.016	0.015	4467	6700	B41858C7478M***
$V_R = 50$	V DC							
82	8 × 11.5	5.168	1.540	0.646	0.573	340	510	B41858C6826M***
100	8 × 11.5	5.168	1.263	0.646	0.573	340	510	B41858C6107M***
120	10 × 12.5	2.984	1.053	0.373	0.336	555	833	B41858C6127M***
180	10 ×16	1.400	0.702	0.175	0.160	778	1167	B41858C6187M***
330	10 ×20	1.000	0.383	0.125	0.118	1030	1545	B41858C6337M***
470	12.5×20	0.880	0.269	0.110	0.104	1300	1950	B41858C6477M***
560	12.5 imes 25	0.712	0.226	0.089	0.082	1490	2235	B41858C6567M***
680	12.5×30	0.360	0.186	0.045	0.043	2140	3210	B41858C6687M***
820	12.5×40	0.269	0.154	0.034	0.032	2799	4199	B41858C6827M***

Composition of ordering code

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk (for $\emptyset \ge 10 \text{ mm}$)
- 002 = for cut leads, bulk (for $\emptyset \ge 10 \text{ mm}$)
- 003 = for crimped leads, blister (for $\emptyset \ge$ 16 mm)
- 004 = for J leads, blister (from $d \times I = 10 \times 12.5$ mm to 18×35 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (from $d \times I = 8 \times 11.5$ mm to 12.5×25 mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (from d × l = 16 × 20 mm to 18 × 31.5 mm)
- 012 = for bent 90° leads, blister (for \emptyset 16 and 18 mm)

Low impedance - 105 °C

Technical data and ordering codes

C _R	Case	ESR _{max}	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	I _{AC,max}	Ordering code
120 Hz	dimensions	10 kHz	120 Hz	10 kHz	100 kHz	100 kHz	100 kHz	(composition see
20 °C	$d \times I$	-40 °C	20 °C	20 °C	20 °C	105 °C	85 °C	below)
μF	mm	Ω	Ω	Ω	Ω	mA	mA	
$V_R = 50$	V DC		•		•			
820	16 ×20	0.401	0.154	0.050	0.046 1820		2730	B41858D6827M***
1000			0.126	0.032	0.030	2653	3980	B41858C6108M***
1000) 18 × 20 0.477		0.126	0.048	0.044	1997	2995	B41858D6108M***
1500	18 ×25	0.382	0.084	0.038	0.036	2417	3626	B41858C6158M***
1800	18 × 31.5	0.300	0.070	0.030	0.028	2989	4483	B41858C6188M***
2200	18 ×35	0.268	0.069	0.027	0.024	3320	4980	B41858C6228M***
2700	18×40	0.210	0.065	0.021	0.020	3871	5807	B41858C6278M***
V _R = 63	V DC							
56			2.256	0.541	0.488	310	464	B41858C8566M***
82	10 × 12.5	5.766	1.540	0.577	0.500	354	531	B41858C8826M***
120	10 ×16	3.075	1.053	0.308	0.279	519	779	B41858C8127M***
180	10 ×20	1.986	0.702	0.199	0.180	705	1058	B41858C8187M***
270	12.5 imes 20	1.688	0.468	0.169	0.153	876	1315	B41858C8277M***
330	12.5 imes 20	1.688	0.383	0.169	0.153	876	1315	B41858C8337M***
390	12.5 imes 25	1.236	0.324	0.124	0.112	1118	1676	B41858C8397M***
470	16 ×20	1.037	0.269	0.104	0.094	1272	1907	B41858C8477M***
680	12.5 imes 40	0.717	0.186	0.072	0.065	1785	2677	B41858C8687M***
680	16 ×25	0.772	0.186	0.077	0.070	1600	2400	B41858D8687M***
680	18 ×20	0.960	0.186	0.096	0.087	1427	2140	B41858E8687M***
820	16 × 31.5	0.541	0.154	0.054	0.049	2092	3138	B41858C8827M***
820	18 ×25	0.761	0.154	0.076	0.069	1735	2602	B41858D8827M***
1200	18 × 31.5	0.518	0.105	0.052	0.047	2294	3441	B41858C8128M***
1500	18 ×35	0.441	0.084	0.044	0.040	2592	3888	B41858C8158M***
1800	18 ×40	0.375	0.070	0.038	0.034	2967	4450	B41858C8188M***

Composition of ordering code

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk (for $\emptyset \ge 10 \text{ mm}$)
- 002 = for cut leads, bulk (for $\emptyset \ge 10$ mm)
- 003 = for crimped leads, blister (for $\emptyset \ge 16$ mm)
- 004 = for J leads, blister (from $d \times I = 10 \times 12.5$ mm to 18×35 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (from $d \times I = 8 \times 11.5$ mm to 12.5×25 mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (from d × l = 16 × 20 mm to 18 × 31.5 mm)
- 012 = for bent 90° leads, blister (for \oslash 16 and 18 mm)

B41858

Technical data and ordering codes

<u> </u>	Case	FOD	FOD	FOD	7	1	1	Ordering code
		ESR _{max}	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	I _{AC,max}	Ordering code
120 Hz	dimensions	10 kHz	120 Hz	10 kHz	100 kHz	100 kHz	100 kHz	(composition see
20 °C	d×I	−40 °C	20 °C	20 °C	20 °C	105 °C	85 °C	below)
μF	mm	Ω	Ω	Ω	Ω	mA	mA	
$V_{R} = 80$	V DC							
33	8 × 11.5	12.219	3.828	1.222	1.114	205	307	B41858C0336M***
39	10×12.5	9.813	3.239	0.981	0.883	266	400	B41858C0396M***
56	10 × 16	6.542	2.256	0.654	0.589	357	536	B41858C0566M***
82	10 ×20	4.606	1.540	0.461	0.423	460	691	B41858C0826M***
150	12.5×20	3.048	0.842	0.305	0.281	647	971	B41858C0157M***
180	12.5 imes 25	2.038	0.702	0.204	0.188	864	1296	B41858C0187M***
270	12.5×30	1.732	0.468	0.173	0.159	1009	1514	B41858C0277M***
270	16 ×20	1.313	0.468	0.131	0.122	1119	1678	B41858D0277M***
330	16 ×25	0.985	0.383	0.099	0.091	1402	2103	B41858C0337M***
390	12.5 imes 40	1.314	0.324	0.131	0.121	1309	1963	B41858C0397M***
390	18 ×20	1.260	0.324	0.126	0.119	1220	1830	B41858D0397M***
470	16×31.5	0.973	0.269	0.097	0.090	1546	2319	B41858C0477M***
470	18 ×25	1.008	0.269	0.101	0.095	1477 2215		B41858D0477M***
680	18 ×31.5	0.720	0.186	0.072	0.068	1907	2861	B41858C0687M***
820	18 ×35	0.679	0.154	0.068	0.063	2061	3092	B41858C0827M***
1000	18 ×40	0.438	0.126	0.044	0.042	2683	4025	B41858C0108M***
$V_{R} = 10$	0 V DC							
22	8 × 11.5	12.219	4.593	1.222	1.114	205	307	B41858C9226M***
27	10×12.5	9.813	3.743	0.981	0.883	266	400	B41858C9276M***
33	10 ×16	6.542	3.062	0.654	0.589	357	536	B41858C9336M***
56	10 ×20	4.606	1.804	0.461	0.423	460	691	B41858C9566M***
100	12.5 imes 20	3.048	1.011	0.305	0.281	647	971	B41858C9107M***
120	12.5×25	2.038	0.842	0.204	0.188	864	1296	B41858C9127M***
180	12.5 imes 30	1.732	0.561	0.173	0.159	1009	1514	B41858C9187M***
180	16 ×20	1.313	0.561	0.131	0.122	1119	1678	B41858D9187M***
220	16 ×25	0.985	0.459	0.099	0.091	1402	2103	B41858C9227M***
270	12.5×40	1.314	0.374	0.131	0.121	1309	1963	B41858C9277M***

Composition of ordering code

- 000 = for standard leads, bulk
- 001 = for kinked leads, bulk (for $\emptyset \ge 10 \text{ mm}$)
- 002 = for cut leads, bulk (for $\emptyset \ge 10 \text{ mm}$)
- 003 = for crimped leads, blister (for $\emptyset \ge$ 16 mm)
- 004 = for J leads, blister (from $d \times I = 10 \times 12.5$ mm to 18×35 mm)
- 008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (from $d \times I = 8 \times 11.5$ mm to 12.5×25 mm)
- 009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (from d × l = 16 × 20 mm to 18 × 31.5 mm)
- 012 = for bent 90° leads, blister (for \emptyset 16 and 18 mm)

Low impedance - 105 °C

Technical data and ordering codes

C _R	Cas	e	ESR _{max}	ESR _{max}	ESR _{max}	Z _{max}	I _{AC,R}	I _{AC,max}	Ordering code				
120 Hz	dim	ensions	10 kHz	120 Hz	10 kHz	100 kHz	100 kHz	100 kHz	(composition see				
20 °C	d imes l		°C d×l		°C d×l		−40 °C	20 °C	20 °C	20 °C	105 °C	85 °C	below)
μF	mm Ω		Ω	Ω	Ω	Ω	mA	mA					
$V_{R} = 10$	0 V C	C		-	-								
270	18	× 20	1.260	0.374	0.126	0.119	1220	1830	B41858D9277M***				
330	16	imes 31.5	0.973	0.306	0.097	0.090	1546	2319	B41858C9337M***				
330	18	$\times 25$	1.008	0.306	0.101	0.095	1477	2215	B41858D9337M***				
390	18	imes 31.5	0.720	0.259	0.072	0.068	1907	2861	B41858C9397M***				
560	18 × 35 0.679		0.679	0.180	0.068	0.063	2061	3092	B41858C9567M***				
680	18 × 40 0.438		0.438	0.149	0.044	0.042	2683	4025	B41858C9687M***				

Composition of ordering code

*** = Version

000 = for standard leads, bulk

001 = for kinked leads, bulk (for $\emptyset \ge 10 \text{ mm}$)

002 = for cut leads, bulk (for $\emptyset \ge 10 \text{ mm}$)

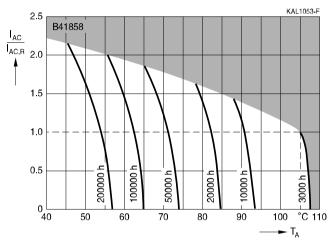
003 = for crimped leads, blister (for $\emptyset \ge 16$ mm)

004 = for J leads, blister (from $d \times I = 10 \times 12.5$ mm to 18×35 mm)

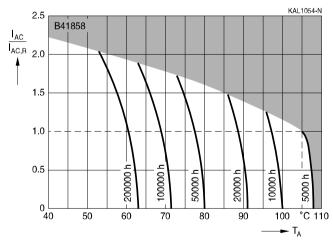
008 = for taped leads, Ammo pack, lead spacing F = 5.0 mm (from $d \times I = 8 \times 11.5$ mm to 12.5×25 mm)

009 = for taped leads, Ammo pack, lead spacing F = 7.5 mm (from $d \times I = 16 \times 20$ mm to 18×31.5 mm)

012 = for bent 90° leads, blister (for \emptyset 16 and 18 mm)

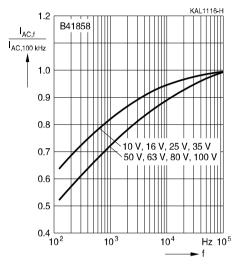


Low impedance – 105 °C


Useful life

depending on ambient temperature T_A under ripple current operating conditions¹⁾

d = 8 mm



 Refer to chapter "General technical information, 5.3 Calculation of useful life" for an explanation on how to interpret the useful life graphs.

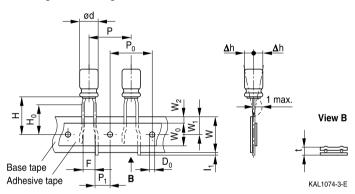
Frequency factor of permissible ripple current I_{AC} versus frequency f

Taping, packing and lead configurations

Taping

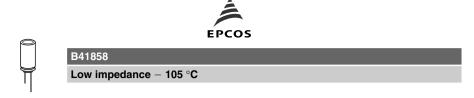
Single-ended capacitors are available taped in Ammo pack from diameter 5 to 18 mm as follows:

Lead spacing F = 2.5 mm (\emptyset d = 5 ... 6.3 mm)

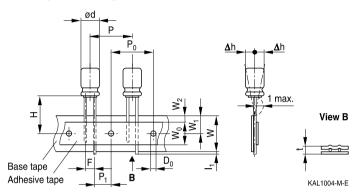

Lead spacing F = 3.5 mm (\emptyset d = 8 mm)

Lead spacing F = 5.0 mm (\emptyset d = 5 ... 12.5 mm)

Lead spacing F = 7.5 mm (\emptyset d = 16 ... 18 mm).


Lead spacing 2.5 mm (\emptyset d = 5 ... 6.3 mm)

Last 3 digits of ordering code: 007

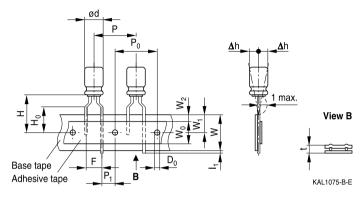

Dimensions in mm

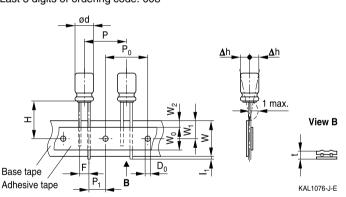
arnothing d	F	Н	W	W_{0}	W_1	W_2	H_{0}	Р	P ₀	P ₁	I ₁	t	Δh	D_0
5 6.3	2.5	18.5	18.0	5.5	9.0	1.5	16.0	12.7	12.7	5.1	1.0	0.7	1.0	4.0
Toler- ance	+0.8 -02	±0.75	±0.5	min.	±0.5	max.	±0.5	±1.0	±0.2	±0.5	max.	±0.2	max.	±0.2

Lead spacing 3.5 mm (\emptyset d = 8 mm)

Last 3 digits of ordering code: 006

Dimensions in mm


$\emptyset d$	F	Н	W	W ₀	W_1	W_2	Р	P ₀	P ₁	I ₁	t	Δh	D ₀
8	3.5	18.5	18.0	12.5	9.0	1.5	12.7	12.7	4.6	1.0	0.7	1.0	4.0
Toler- ance	+0.8 -02	1.0	±0.5	min.	±0.5	max.	±1.0	±0.2	±0.5	max.	±0.2	max.	±0.2

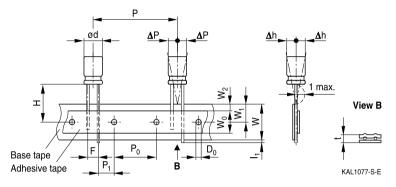

Low impedance - 105 °C

Lead spacing 5.0 mm (\varnothing d = 5 ... 8 mm)

Last 3 digits of ordering code: 008

Lead spacing 5.0 mm (\emptyset d = 10 ... 12.5 mm) Last 3 digits of ordering code: 008

Dimensions in mm


\emptyset d	F	Н	W	W_0	W_1	W_2	H _o	Р	P ₀	P ₁	I_1	t	Δh	D ₀
5	5.0	18.5	18.0	55	9.0	1.5	16.0	107	107	3.85	1.0	0.7	1.0	4.0
6.3	5.0	10.0	10.0	5.5	9.0	1.5	10.0	12.7	12.7	3.00	1.0	0.7	1.0	4.0
8		20.0					16.0	12.7	12.7	3.85				
10	5.0	19.0	18.0	12.5	9.0	1.5	-	12.7	12.7	3.85	1.0	0.7	1.0	4.0
12.5		19.0					-	15.0	15.0	5.0				
Toler- ance	+0.8 -02	±0.75	±0.5	min.	±0.5	max.	±0.5	±1.0	±0.2	±0.5	max.	±0.2	max.	±0.2

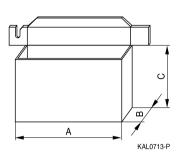
Please read *Cautions and warnings* and *Important notes* at the end of this document.

Lead spacing 7.5 mm (\emptyset d = 16 ...18 mm)

Last 3 digits of ordering code: 009

Dimensions in mm

\varnothing d	F	Н	W	W _o	W_1	W_2	Р	P ₀	P ₁	I_1	t	ΔP	Δh	D_0
16 18 ^{*)}	7.5	18.5	18.0	12.5	9.0	15	20.0	15.0	2 75	10	0.7	0	0	4.0
18 ^{*)}	7.5	10.5	10.0	12.5	9.0	1.5	30.0	15.0	3.75	1.0	0.7	0	0	4.0
Toler-	±0.8	-0.5 +0.75	+0 5	min	+0.5	may	+1.0	+0.2	+0 5	may	+0 2	+1 0	+1 0	+0.2
ance	±0.0	+0.75	±0.5		10.5	max.	±1.0	±0.2	10.5	max.	±0.2	1.0	±1.0	±0.2

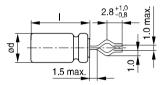

*) Available only for case dimensions 18 \times 20, 18 \times 25 and 18 \times 31.5 mm

B41858

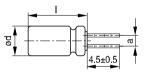
Packing units and box dimensions

Ammo pack

Case size	Dimer	Dimensions (mm)					
d imes I				units			
mm	A _{max}	B_{max}	C_{max}	pcs.			
5×11	345	55	240	2000			
6.3 × 11	345	55	290	2000			
8×11.5	345	55	240	1000			
10 × 12.5	345	55	280	750			
10 × 16	345	60	200	500			
10×20	345	60	200	500			
12.5 × 20	345	65	280	500			
12.5 × 25	345	65	280	500			
12.5 imes 25	345	65	280	500			
12.5 imes 30	345	65	275	500			
16×20	315	65	275	300			
16×25	315	65	275	300			
16 imes 31.5	315	65	275	300			
18×20	315	65	275	250			
18×25	315	65	275	250			
18×31.5	315	65	275	250			

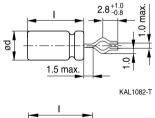

Kinked or cut leads

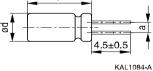
Single-ended capacitors are available with kinked or cut leads. Other lead configurations also available upon request.


Kinked leads

Last 3 digits of ordering code: 001

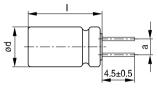
With stand-off rubber seal





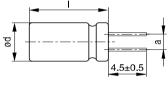
With flat rubber seal

Case size	Dimensions (mm)
$d \times I$ (mm)	a ±0.5
10×20	5.0
12.5 × 20	5.0
12.5 imes 25	5.0
12.5 imes 30	5.0
12.5 × 35	5.0
12.5 imes 40	5.0
16×20	7.5
16 imes 25	7.5
16×31.5	7.5
18×20	7.5
18 × 25	7.5
18×31.5	7.5
18 × 35	7.5
18×40	7.5
20 × 20	10.0
20 × 25	10.0
20 × 40	10.0
22 × 30	10.0
22 × 35	10.0
22 × 40	10.0



B41858

Cut leads


Last 3 digits of ordering code: 002

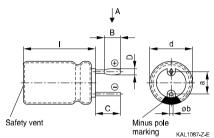
With stand-off rubber seal

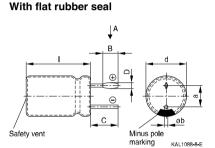
KAL1085-

With flat rubber seal

KAL1086-R

Case size	Dimensions (mm)
$d \times I$ (mm)	a ±0.5
10 × 12.5	5.0
10 × 16	5.0
10×20	5.0
12.5 × 20	5.0
12.5 × 25	5.0
12.5 × 30	5.0
12.5 × 35	5.0
12.5 × 40	5.0
16×20	7.5
16 × 25	7.5
16 × 31.5	7.5
18×20	7.5
18×25	7.5
18×31.5	7.5
18 × 35	7.5
18×40	7.5
20×20	10.0
20 × 25	10.0
20×40	10.0

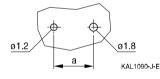

PAPR leads (Protection Against Polarity Reversal)


These lead configurations ensure correct placement of the capacitor on the PCB with regard to polarity. PAPR leads are available for diameters from 10 mm up to 20 mm. There are three configurations available: Crimped leads, J leads, bent 90° leads

Crimped leads

Last 3 digits of ordering code: 003

With stand-off rubber seal

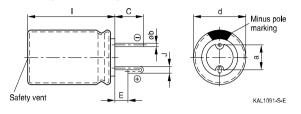

Suggestion for PCB hole diameter

Suggestion for PCB hole diameter, wire 00.8 mm

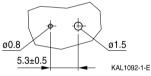
а

Suggestion for PCB hole diameter, wire ø1.0 mm

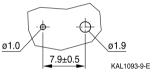
Case size	Dimensio	ons (mm)				
d × l (mm)	B ±0.2	C ±0.5	D ±0.1	E ±0.1	a ±0.5	Øb
16×20	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05
16 imes 25	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05
16×31.5	1.5	3.0	1.3	0.3	7.5	0.8 ±0.05
18×20	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1
18×25	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1
18×31.5	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1
18 imes 35	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1
18×40	1.5	3.0	1.3	0.3	7.5	0.8 ±0.1
20×20	1.5	3.0	1.6	0.3	10.0	1.0 ±0.1
20 × 25	1.5	3.0	1.6	0.3	10.0	1.0 ±0.1
20 × 40	1.5	3.0	1.6	0.3	10.0	1.0 ±0.1


KAL1089-G-E

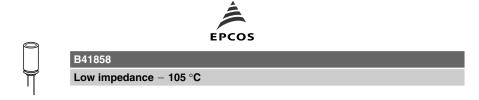
Low impedance - 105 °C


J leads

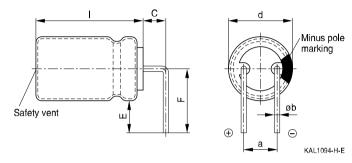
Last 3 digits of ordering code: 004



Suggestion for PCB hole diameter


Suggestion for PCB hole diameter, wire $\emptyset 0.6 \text{ mm}$

Suggestion for PCB hole diameter, wire $\emptyset 0.8 \text{ mm}$



Case size	Dimensions (mm)								
$d \times I$ (mm)	C ±0.5	E ±0.5	J ±0.2	a ±0.5	Øb				
10 × 12.5	3.2	0.7	1.2	5.0	0.6 ±0.05				
10×16	3.2	0.7	1.2	5.0	0.6 ±0.05				
10×20	3.2	0.7	1.2	5.0	0.6 ±0.05				
12.5 imes 20	3.2	0.7	1.2	5.0	0.6 ±0.05				
12.5×25	3.2	0.7	1.2	5.0	0.6 ±0.05				
16×20	3.5	0.7	1.6	7.5	0.8 ±0.05				
16×25	3.5	0.7	1.6	7.5	0.8 ±0.05				
16×31.5	3.5	0.7	1.6	7.5	0.8 ±0.05				
18×20	3.5	0.7	1.6	7.5	0.8 ±0.1				
18×25	3.5	0.7	1.6	7.5	0.8 ±0.1				
18×31.5	3.5	0.7	1.6	7.5	0.8 ±0.1				
18 × 35	3.5	0.7	1.6	7.5	0.8 ±0.1				

Bent 90° leads for horizontal mounting pinning

Last 3 digits of ordering code: 012

Case size	Dimension	Dimensions (mm)							
$d \times I$ (mm)	C ±0.5	E ±0.5	F ±0.5	a ±0.5	Øb				
16×20	4.0	4.0	12.0	7.5	0.8 ±0.05				
16 imes 25	4.0	4.0	12.0	7.5	0.8 ±0.05				
16 imes 31.5	4.0	4.0	12.0	7.5	0.8 ±0.05				
18×20	4.0	4.0	13.0	7.5	0.8 ±0.1				
18×25	4.0	4.0	13.0	7.5	0.8 ±0.1				
18×31.5	4.0	4.0	13.0	7.5	0.8 ±0.1				
18×35	4.0	4.0	13.0	7.5	0.8 ±0.1				
18×40	4.0	4.0	13.0	7.5	0.8 ±0.1				

Bent leads for diameter 12.5 mm available upon request.

B41858

Overview of packing units and code numbers for case sizes 5 \times 11 ... 16 \times 31.5

								PAPR	
Case size	Stan-	Taped	l,		Kinked	Cut	Crimped	J leads	Bent 90°
$d \times I$	dard,	Ammo	pack		leads,	leads,	leads		leads,
	bulk				bulk	bulk			blister
mm	pcs.	pcs.	pcs.			pcs.	pcs.	pcs.	pcs.
5×11	2000	2000			-	-	-	-	
6.3×11	2500	2000			-	-	-	-	
8×11.5	1000	1000			-	-	-	-	
10 × 12.5	1000	750	750			1000	-	675	
10 × 16	100	500	500			1000	-	675	
10×20	500	500			500	500	-	500	
12.5 × 20	350	500			350	350	-	300	1)
12.5 × 25	250	500	500			500	-	225	1)
12.5 × 30	200	500	500			175	-	180	1)
12.5 × 35	175	-			175	175	-	150	1)
12.5 × 40	175	-			175	175	-	150	1)
16×20	250	300			200	200	200	200	120
16×25	250	300			200	200	200	200	120
16×31.5	200	300			250	250	344	344	120
The last three	000	Code	F (mm)	d (mm)	001	002	003	004	012
digits of the		006	3.5	8					
complete		007	2.5	56.3					
ordering code		008	5	512.5					
state the lead configuration		009	7.5	1618					

1) Available upon request

Low impedance - 105 °C

Overview of packing units and code numbers for case sizes 18 \times 20 ... 25 \times 40

								PAPR	
Case size	Stan-	Tapec	l,		Kinked	Cut	Crimped	J leads	Bent 90°
d×l	dard,	Ammo	pack		leads,	leads,	leads		leads,
	bulk				bulk	bulk			blister
mm	pcs.	pcs.			pcs.	pcs.	pcs.	pcs.	pcs.
18×20	175	250			175	175	200	200	120
18×25	150	250			150	150	200	200	120
18×31.5	100	250			100	100	150	150	120
18 × 35	100	-	-			100	150	150	150
18×40	125	-			100	100	120	-	72
20 × 20	125	-			125	125	200	-	-
20 × 25	125	-			125	125	200	-	-
20 imes 30	100	-			100	100	120	-	-
20 imes 35	100	-			100	100	120	-	-
20 imes 40	100	-			100	100	120	-	-
22×30	80	-			100	100	-	-	-
22×35	80	-			100	100	-	-	-
22×40	80	-			100	100	-	-	-
25 imes 40	40	-			100	-	-	-	-
The last three	000	Code	F (mm)	d (mm)	001	002	003	004	012
digits of the		007	2.5	46.3					
complete		800	5	6.312.5					
ordering code		009	7.5	1618					
state the lead									
configuration									

B41858

Cautions and warnings

Personal safety

The electrolytes used by EPCOS have not only been optimized with a view to the intended application, but also with regard to health and environmental compatibility. They do not contain any solvents that are detrimental to health, e.g. dimethyl formamide (DMF) or dimethyl acetamide (DMAC).

Furthermore, part of the high-voltage electrolytes used by EPCOS are self-extinguishing. They contain flame-retarding substances which will quickly extinguish any flame that may have been ignited.

As far as possible, EPCOS does not use any dangerous chemicals or compounds to produce operating electrolytes. However, in exceptional cases, such materials must be used in order to achieve specific physical and electrical properties because no safe substitute materials are currently known. However, the amount of dangerous materials used in our products has been limited to an absolute minimum. Nevertheless, the following rules should be observed when handling Al electrolytic capacitors:

- Any escaping electrolyte should not come into contact with eyes or skin.
- If electrolyte does come into contact with the skin, wash the affected parts immediately with running water. If the eyes are affected, rinse them for 10 minutes with plenty of water. If symptoms persist, seek medical treatment.
- Avoid breathing in electrolyte vapor or mists. Workplaces and other affected areas should be well ventilated. Clothing that has been contaminated by electrolyte must be changed and rinsed in water.

Low impedance - 105 °C

Product safety

The table below summarize the safety instructions that must be observed without fail. A detailed description can be found in the relevant sections of chapter "General technical information".

Торіс	Safety information	Reference Chapter "General technical information"
Polarity	Make sure that polar capacitors are connected with the right polarity.	1 "Basic construction of aluminum electrolytic capacitors"
Reverse voltage	Voltages polarity classes should be prevented by connecting a diode.	3.1.6 "Reverse voltage"
Upper category temperature	Do not exceed the upper category temperatur.	7.2 "Maximum permissible operating temperature"
Maintenance	Make periodic inspections of the capacitors. Before the inspection, make sure that the power supply is turned off and carefully discharge the electricity of the capacitors. Do not apply any mechanical stress to the capacitor terminals.	10 "Maintenance"
Mounting position of screw terminal capacitors	Do not mount the capacitor with the terminals (safety vent) upside down.	11.1. "Mounting positions of capacitors with screw terminals"
Mounting of single-ended capacitors	The internal structure of single-ended capacitors might be damaged if excessive force is applied to the lead wires. Avoid any compressive, tensile or flexural stress. Do not move the capacitor after soldering to PC board. Do not pick up the PC board by the soldered capacitor. Do not insert the capacitor on the PC board with a hole space different to the lead space specified.	11.4 "Mounting considerations for single-ended capacitors"
Robustness of terminals	The following maximum tightening torques must not be exceeded when connecting screw terminals: M5: 2 Nm M6: 2.5 Nm	11.3 "Mounting torques"
Soldering	Do not exceed the specified time or temperature limits during soldering.	11.5 "Soldering"

B41858

Topic	Safety information	Reference
		Chapter "General
		technical information"
Soldering,	Do not allow halogenated hydrocarbons to come	11.6
cleaning agents	into contact with aluminum electrolytic capacitors.	"Cleaning agents"
Passive	Avoid external energy, such as fire or electricity.	8.1
flammability		"Passive flammability"
Active	Avoid overload of the capacitors.	8.2
flammability		"Active flammability"
		Reference
		Chapter "Capacitors
		with screw terminals"
Breakdown strength	Do not damage the insulating sleeve, especially	"Screw terminals -
of insulating	when ring clips are used for mounting.	accessories"
sleeves		

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of passive electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of a passive electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of a passive electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as "hazardous"). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, EPCOS-JONES, BAOKE, Alu-X, CeraDiode, CSSP, MLSC, PhaseCap, PhaseMod, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMID, SIOV, SIP5D, SIP5K, UltraCap, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.