

Data Sheet B4234

Low-Loss Dual Band Filter for Mobile Communication

881,5/1960,0 MHz

Ceramic package QCC10G

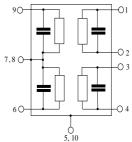
Data Sheet

Features

- Low-loss RF filter for mobile telephone GSM 850/1900 system , receive path
- Usable passband:

Filter 1 (GSM850): 25 MHz Filter 2 (GSM1900): 60 MHz

- Unbalanced to balanced operation of both filters
- Impedance transformation from 50 Ω to 150 Ω for both filters
- Suitable for GPRS class 1 to 12
- Ceramic package for Surface Mounted Technology (SMT)
- RoHS compliant


Terminals

■ Ni, gold-plated

Dimensions in mm, approx. weight 27 mg

Pin configuration

1, 2	Output, balanced [Filter 1]
3, 4	Output, balanced [Filter 2]
6	Input [Filter 2]
7,8	Case ground
9	Input [Filter 1]
5, 10	Case ground

Туре	Ordering code	Marking and Package according to	Packing according to		
B4234	B39202-B4234-H910	C61157-A7-A142	F61074-V8174-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	- 40 / + 85	°C	
Storage temperature range	T_{stg}	- 40 / + 85	°C	
DC voltage	$V_{\rm DC}$	5	V	
ESD voltage	V _{ESD} *	50*	V	Machine Model, 10 pulses
Input power at				
Tx bands:				
GSM850, GSM900	P_{IN}	15	dBm	peak power of GSM signal,
GSM1800, GSM1900				duty cycle 4:8

^{* -} acc. to JESD22-A115A (Machine Model), 10 negative & 10 positive pulses

B4234

Low-Loss Dual Band Filter for Mobile Communication

881,5/1960,0 MHz

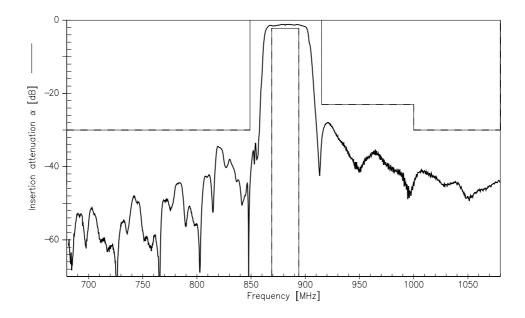
Data Sheet

Characteristics Filter 1 (GSM850)

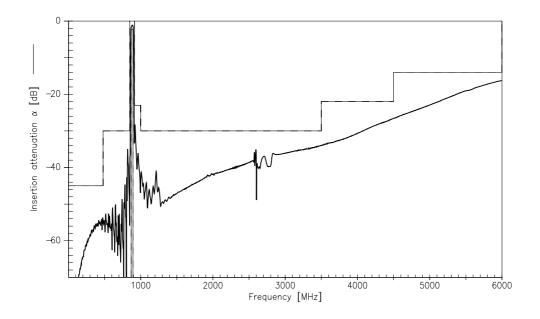
Operating temperature range: $T = -20 \text{ to } +75^{\circ}\text{ C}$ Terminating source impedance: $Z_{\text{S}} = 50 \ \Omega$ (unbalanced) Terminating load impedance: $Z_{\text{L}} = 150 \ \Omega$ (balanced) || 56 nH

	min.	typ.	max.	
Center frequency f _c	_	881,5	_	MHz
•	nax	4.0	0.0	I.D.
869,0 894,0 MHz	_	1,8	2,2	dB
Amplitude ripple (p-p) Δα	y			
869,0 894,0 MHz	~ _	0,6	1,0	dB
000,0 00 1,0 11112		0,0	1,0	
Input VSWR				
869,0 894,0 MHz	_	1,8	2,1	
Output VSWR				
869,0 894,0 MHz	_	1,8	2,1	
0.4.4.18.4.1.4.0.40.40.10				
Output amplitude balance (S_{31}/S_{21})	4.5		4.0	I.D.
869,0 894,0 MHz	-1,5		1,0	dB
Output phase balance $(\phi(S_{31})-\phi(S_{21})+180^{\circ})$				
869.0 894.0 MHz	-10,0		12,0	degree
,-	, , ,		, -	
Absolute attenuation α_{al}	abs			
10,0 480,0 MHz	45,0	50,0	_	dB
480,0 849,0 MHz	30,0	34,0	_	dB
915,01000,0 MHz	23,0	27,0	_	dB
1000,03500,0 MHz	30,0	34,0	_	dB
3500,04500,0 MHz	22,0	26,0	<u> </u>	dB
4500,06000,0 MHz	14,0	17,0	_	dB

B4234


Low-Loss Dual Band Filter for Mobile Communication

881,5/1960,0 MHz


Data Sheet

Transfer function of filter 1 (narrow band)

Transfer function of filter 1 (wide band)

B4234

Low-Loss Dual Band Filter for Mobile Communication

881,5/1960,0 MHz

Data Sheet

Characteristics Filter 2 (GSM1900)

Operating temperature range: $T = +25 \pm 2 \,^{\circ}\text{C}$

Terminating source impedance: $Z_{\rm S}=50~\Omega$ (unbalanced) Terminating load impedance: $Z_{\rm L}=150~\Omega$ (balanced) || 12 nH

				min.	typ.	max.	
Center frequency			f _C	_	1960,0	_	MHz
Maximum insertion attenuation							
	,01990,0	MHz	α_{max}		2.0	2.5	dB
1930	,01990,0	IVIIIZ		_	2,2	2,5	ub
Amplitude ripple (p-p)			Δα				
1930	,01990,0	MHz			0,6	1,0	dB
Input VSWR							
•	,01990,0	MHz		_	1,7	2,0	
Output VSWR					·		
1930	,01990,0	MHz			1,7	2,0	
Output amplitude balance (S_{31}/S_{21})							
	01990,0	MHz		-1,3		1,3	dB
Output phase balance $(\phi(S_{31})-\phi(S_{21})+180^{\circ})$							
	,01990,0	MHz		-12,0		8,0	degree
Absolute attenuation			$\alpha_{\sf abs}$				
10	,01510,0	MHz	abo	40,0	43,0	_	dB
1510	,01820,0	MHz		30,0	34,0	_	dB
1820	,01880,0	MHz		26,0	30,0	_	dB
1880	,01910,0	MHz		12,0	16,0	_	dB
	,02080,0	MHz		12,0	17,0	_	dB
	,02400,0	MHz		24,0	29,0	_	dB
	,04500,0	MHz		30,0	32,0	_	dB
4500	,06000,0	MHz		22,0	25,0	_	dB

B4234

Low-Loss Dual Band Filter for Mobile Communication

881,5/1960,0 MHz

Data Sheet

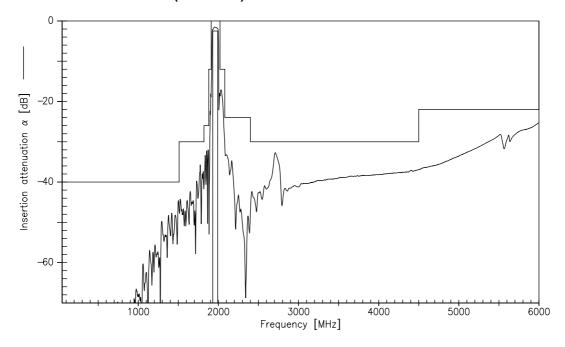
Characteristics Filter 2 (GSM1900)

Operating temperature range: $T = -20 \text{ to } +75^{\circ}\text{C}$ Terminating source impedance: $Z_{\text{S}} = 50 \ \Omega$ (unbalanced) Terminating load impedance: $Z_{\text{L}} = 150 \ \Omega$ (balanced) || 12 nH

				min.	typ.	max.	
Center frequency			f _c	_	1960,0	_	MHz
Maximum insertion attenuation		α					
	1990,0	MHz	α_{max}		2,3	2,7	dB
Amplitude ripple (p-p)			Δα				
	1990,0	MHz	Δα.	_	0,6	1,0	dB
Input VSWR							
,	1990,0	MHz		_	1,9	2,2	
Output VSWR 1930,0	1990,0	MHz		_	1,9	2,2	
Output amplitude balance (S_{31}/S_{21})							
	1990,0	MHz		-1,3		1,3	dB
Output phase balance $(\phi(S_{31})$ -	-φ(S ₂₁)+180	ı°)					
1930,0	1990,0	MHz		-12,0		8,0	degree
Absolute attenuation			α_{abs}				
10,0	1510,0	MHz		40,0	43,0	_	dB
1510,0	1820,0	MHz		30,0	34,0	_	dB
1820,0	1880,0	MHz		26,0	30,0	_	dB
1880,0	1910,0	MHz		10,0	13,0	_	dB
2020,0	2080,0	MHz		12,0	17,0	_	dB
2080,0	2400,0	MHz		24,0	29,0	_	dB
2400,0	4500,0	MHz		30,0	32,0	_	dB
4500,0	6000,0	MHz		22,0	25,0	_	dB


Low-Loss Dual Band Filter for Mobile Communication

881,5/1960,0 MHz


Data Sheet

Transfer function of filter 2 (narrow band)

Transfer function of filter 2 (wide band)

B4234

Low-Loss Dual Band Filter for Mobile Communication

881,5/1960,0 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW COM WT PD P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2005. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.