Ver 1.1

Radiation-Hardened LVDS Serializer

Datasheet

Part Number: B54LVDS217ARH

Page of Revise Control

Version No.	Publish Time	Revised Chapter	Revise Introduction	Note
1.0	03.24.2018			
1.1	10.09.2018	6.2	Advance Absolute Maximum ratings information	

B54LVDS217ARH

TABLE OF CONTENTS

1.	Features	.1
2.	General Description	.1
3.	Function Block Diagram	.1
4.	Packages and Pin Description Descriptions	.2
5.	Pin List	.3
6.	Detailed Description	.4
	6.1 Storage Condition	.4
	6.2 Absolute Maximum Ratings	.4
	6.3 Recommended Operation Conditions	.5
7.	Specifications	.5
8.	Package Specifications	11
9.	Appendix I Application Information	12
10.	Appendix II Replaced Product	14

1. Features

- 15 to 75 MHz shift clock support
- Low power consumption
- Power-down mode <216µW (max)
- Cold sparing all pins
- Narrow bus reduces cable size and cost
- Up to 1.575 Gbps throughput
- Up to 197 Megabytes/sec bandwidth
- 325 mV (typ) swing LVDS devices for low EMI
- PLL requires no external components
- Rising edge strobe

- Packaging: 48-lead flatpack (dual in-line)
- Compatible with ANSI/TIA/EIA 644-1996 LVDS Standard
- Operating temperature: $-55^{\circ}C \sim -$ +125°C
- ESD feature (human body model): 2000V
- Electrical latch up feature: 200mA
- Total ionizing dose: ≥100Krad(Si)
- Single event latch-up threshold: ≥75MeV·cm2/mg

2. General Description

The B54LVDS217ARH Serializer converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. At a transmit clock frequency of 75MHz, 21 bits of TTL data are transmitted at a rate of 525 Mbps per LVDS data channel. Using a 75MHz clock, the data throughput is 1.575 Gbit/s (197Mbytes/sec).

The B54LVDS217ARH Serializer allows the use of wide, high speed TTL interfaces while reducing overall EMI and cable size.

All pins have Cold Spare buffers. These buffers will be high impedance when VDD is tied to Vss.

3. Function Block Diagram

B54LVDS217ARH function block diagram is shown in figure 1.

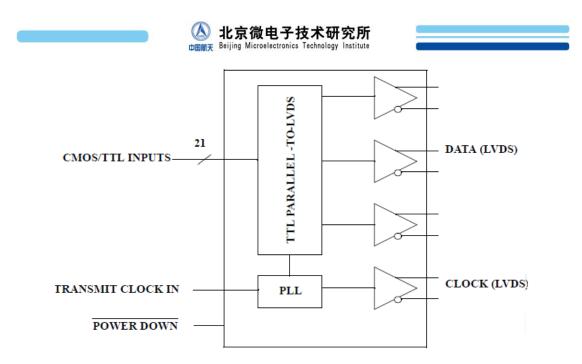


Figure 1. B54LVDS217ARH Serializer Block Diagram

4. Packages and Pin Description Descriptions

The provided package is: FP48

B54LVDS0217ARH - pin configuration is shown in Figure 2.

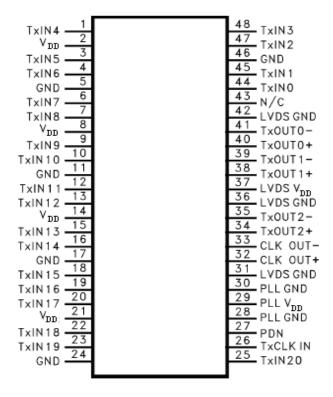


Figure2. B54LVDS217ARH Pinout

Name	I/O	No	Description
TxIN	Ι	21	TTL level input
TxOUT+	0	3	Positive LVDS differential data output
TxOUT-	0	3	Negative LVDS differential data output
TxCLK IN	I	1	TTL level clock input. The rising edge acts as data
TXCLK IN	1	1	strobe. Pin name TxCLK IN
CLKOUT+	0	1	Positive LVDS differential clock output
CLK OUT-	0	1	Negative LVDS differential clock output
			TTL level input. Assertion (low input)
PDN	Ι	1	TRISTATEs the clock and data outputs, ensuring
			low current at power down.
VDD	Ι	4	Power supply pins for TTL inputs and logic
GND	Ι	5	Ground pins for TTL inputs and logic
PLL VDD	Ι	1	Power supply pins for PLL
PLL GND	Ι	2	Ground pins for PPL
LVDS VDD	Ι	1	Power supply pin for LVDS output
LVDS GND	Ι	3	Ground pins for LVDS outputs

Table 1 B54LVDS217ARH Pin Function Descriptions

5. Pin List

Table 2 B54LVDS217ARH Pin list

Pin No	Name	Dir	Description	Pin No	Name	Dir	Description
1	TxIN4	Ι	Data Input 4	25	TxIN20	Ι	Data Input 20
2	VDD	Р	Digital power supply	26	CLK_IN	Ι	clock input
3	TxIN5	Ι	Data Input 5	27	PDN	Ι	Power down(low active)
4	TxIN6	Ι	Data Input 6	28	PLL GND	Р	PLL ground supply
5	GND	Р	Digital ground supply	29	PLL VDD	Р	PLL power supply
6	TxIN7	Ι	Data Input 7	30	PLL GND	Р	PLL ground supply
7	TxIN8	Ι	Data Input 8	31	LVDS GND	Р	LVDS ground supply

					1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		
8	VDD	Р	Digital power supply	32	CLK_OUT+	0	Positive LVDS clock output
9	TxIN9	Ι	Data Input 9	33	CLK_OUT-	0	Negative LVDS clock output
10	TxIN10	Ι	Data Input 10	34	TxOUT2+	0	Positive LVDS data output 2
11	GND	Р	Digital ground supply	35	TxOUT2-	0	Negative LVDS data output 2
12	TxIN11	Ι	Data Input 11	36	LVDS GND	Р	LVDS ground supply
13	TxIN12	Ι	Data Input 12	37	LVDS VDD	Р	LVDS power supply
14	VDD	Р	Digital power supply	38	TxOUT1+	0	Positive LVDS data output 1
15	TxIN13	Ι	Data Input 13	39	TxOUT1-	0	Negative LVDS data output 1
16	TxIN14	Ι	Data Input 14	40	TxOUT0+	0	Positive LVDS data output 0
17	GND	Р	Digital ground supply	41	TxOUT0-	0	Negative LVDS data output 0
18	TxIN15	Ι	Data Input 15	42	LVDS GND	Р	LVDS ground supply
19	TxIN16	Ι	Data Input 16	43	NC		No connection
20	TxIN17	Ι	Data Input 17	44	TxIN0	Ι	Data Input 0
21	VDD	Р	Digital power supply	45	TxIN1	Ι	Data Input 1
22	TxIN18	Ι	Data Input 18	46	GND	Р	Digital ground supply
23	TxIN19	Ι	Data Input 19	47	TxIN2	Ι	Data Input 2
24	GND	Р	Digital ground	48	TxIN3	Ι	Data Input 3

▲ 北京微电子技术研究所 Beijing Microelectronics Technology Institute

6. Detailed Description

6.1 Storage Condition

Packaged product should be stored in the ventilate warehouse with ambient temperature $15^{\circ}C \sim 25^{\circ}C$ and relative humidity less than 65%. There should be no acid, alkali or other radiant gas in the environment.

6.2 Absolute Maximum Ratings

- a) Supply voltage range to ground potential (V_{DD}) : -0.3V $\sim\!\!4.0V$
- b) DC input voltage range (V_in) : -0.3V \sim (V_DD+0.3V)
- c) Storage temperature (T_{stg}) : -65 $^\circ\!\!\!C \sim 150 ^\circ\!\!\!\!C$
- d) Power dissipation (P_D) : 2W

- e) Lead temperature $(T_h, 10s)$: 260°C
- f) Thermal resistance $(R_{th(J-C)})$: 10°C/W
- g) Junction temperature (T_J) : +150°C
- h) DC input current (I_I) : $\pm 10mA$

NOTES: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. "Electrical Characteristics" specify conditions for device operation.

6.3 Recommended Operation Conditions

- a) Supply voltage relative to ground(VDD): 3.0 V to 3.6 V
- b) DC input voltage, VIN and PDN: 0 to VDD
- c) Case temperature range : -55° C to $+125^{\circ}$ C

7. Specifications

All electrical characteristics are shown in table 3.

Table3 B54LVDS217ARH electrical characteristics

DC ELECTRICAL CHARACTERISTICS

		CONDITION	LIN		
SYMBOL	PARAMETER	$(VDD = 3.0V \pm 0.3V;$	MINI	MAV	UNIT
		$-55^{\circ}C < TC < +125^{\circ}C$)	MIN	MAX	
VIH	High level input voltage		2.0	VDD	V
VIL	Low level input voltage		GND	0.8	V
IIH	High-level input current	VIN = 3.6V; VDD = 3.6V	-10	+10	μΑ
IIL	Low-level input current	VIN = 0V; VDD = 3.6V	-10	+10	μΑ
VCL	Input clamp voltage	ICL = -18mA		-1.5	V
ICS	Cold Spare Leakage current	VIN = 3.6V; VDD = VSS	-20	+20	μΑ
VOD	Differential Output Voltage	$RL = 100\Omega$	250	400	mV

Δνοd	Change in VOD between complimentary output states	$RL = 100\Omega$		35	mV	
VOS	Offset Voltage	$RL = 100\Omega$	1.120	1.410	V	
ΔVOS	Change in VOS between complimentary output states	$RL = 100\Omega$		35	mV	
IOZ	Output Three-State Current	PWR DWN = 0V $VOUT = 0V or VDD$	-10	+10	μΑ	
ICSOUT	Cold Spare Leakage Current	VIN=3.6V, VDD = VSS	-20	+20	μΑ	
IOS	Output Short Circuit Current	VOUT+ or VOUT- = $0V$		5mA	mA	
ICCL	Transmitter supply current with loads	$RL = 100\Omega, CL = 5pF,$ $f = 50MHz$		65.0	mA	
ICCZ	Power down current	DIN = VSS, $PDN = 0V$, f = 0Hz		60.0	μΑ	

AC SWITCHING CHARACTERISTICS

		CONDITION			
SYMBOL	PARAMETER	$(VDD = 3.0V \pm 0.3V, TA =$	MIN	MAX	UNIT
		-55℃to +125℃)			
LLHT	LVDS Low-to-High Transition	Figure 3		1.5	ns
	Time	i iguie 5		1.5	115
LHLT	LVDS High-to-Low Transition	Figure 3		1.5	ns
LILI	Time	Figure 5		1.5	115
TPPos0 ^a	Transmitter Output Pulse Position		-0.22	0.23	ns
111.050	for Bit 0		-0.22	0.23	115
TPPos1 ^a	Transmitter Output Pulse Position		1.68	2.13	ns
111051	for Bit 1		1.00	2.15	115
TPPos2 ^a	Transmitter Output Pulse Position		3.59	4.04	ns
111052	for Bit 2	V _{DD} =3.0V ,f=75MHz	5.59	4.04	115
TPPos3 ^a	Transmitter Output Pulse Position	Figure9	5.49	5.94	ns
111085	for Bit3		5.49	5.94	115
TPPos4 ^a	Transmitter Output Pulse Position		7.40	7.85	20
111054	for Bit 4		7.40	1.05	ns
TPPos5 ^a	Transmitter Output Pulse Position		9.30	9.75	20
IFF0S5	for Bit 5		9.30	9.75	ns

TPPos6 ^a	Transmitter Output Pulse Position		11.21	11.66	ns
111 080	for Bit 6		11.21	11.00	115
TCCS	Channel to Channel skew	V _{DD} =3.0V, Figure10		0.45	ns
TCIP ^b	TxCLK IN Period	Figure5	13.3	66.7	ns
TCIH ^b	T-CLU IN IL: -1 Time	F igure 5	0.35	0.65	
ICIH	TxCLK IN High Time	Figure5	t _{CIP}	t _{CIP}	ns
TCIL ^b	TxCLK IN Low Time	Ei aura 5	0.35	0.65	ns
ICIL		Figure5	t _{CIP}	t _{CIP}	
TSTC ^b	TxIN Setup to TxCLK IN	f=15MHz ,Figure5	1.0		
1510		f=75MHz ,Figure5	0.5		ns
THTC ^b		f=15MHz ,Figure5	0.7		
IHIC	TxIN Hold to TxCLK IN	f=75MHz ,Figure5	0.5		ns
TCCD	TxCLK IN to TxCLK OUT Delay	$V_{DD} = 3.0V$, Figure6	0.5	2.5	ns
TPLLS	Transmitter Phase Lock Loop Set	V _{DD} =3.0V, Figure7		10	ms
TPDD	Transmitter Powerdown Delay	V _{DD} =3.0V, Figure8		100	ns
a: Guarante	ed by design.		•	•	
b: Guarante	ed by characterization				

北京微电子技术研究所 中国版表 Beijing Microelectronics Technology Institute

AC Timing Diagrams

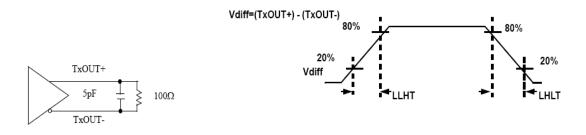


Figure 3. B54LVDS217ARH Output Load and Transition Times

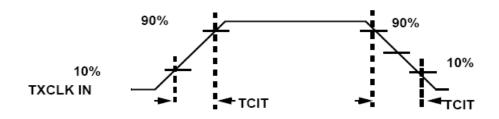
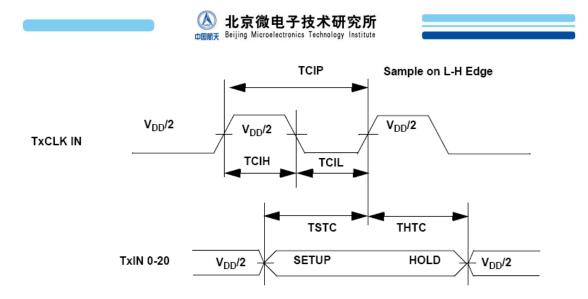



Figure 4. B54LVDS217ARH Input Clock Transition Time

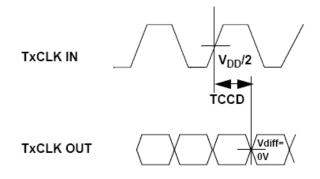


Figure6. B54LVDS217ARH Clock-to-Clock Out Delay

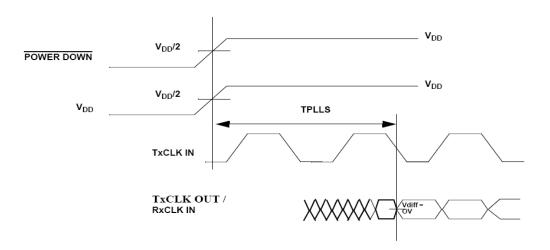


Figure 7. B54LVDS217ARH Phase Lock Loop Set Time

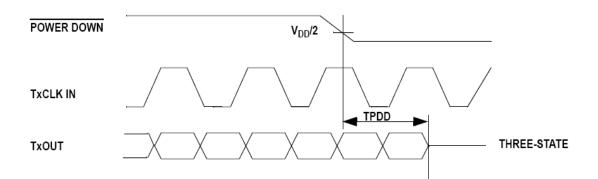


Figure8. B54LVDS217ARH Transmitter Powerdown Delay

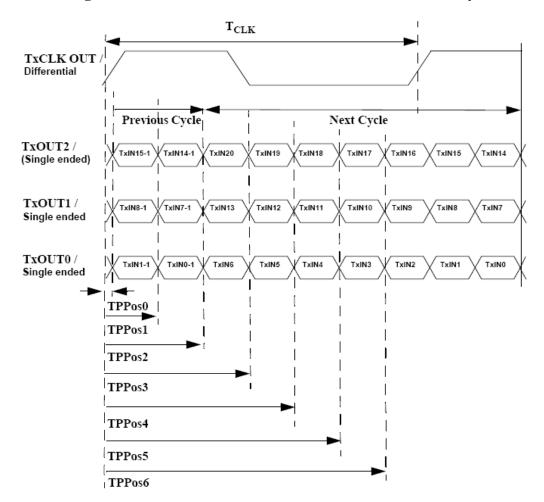


Figure 9. B54LVDS217ARH Output Pulse Position Measurement

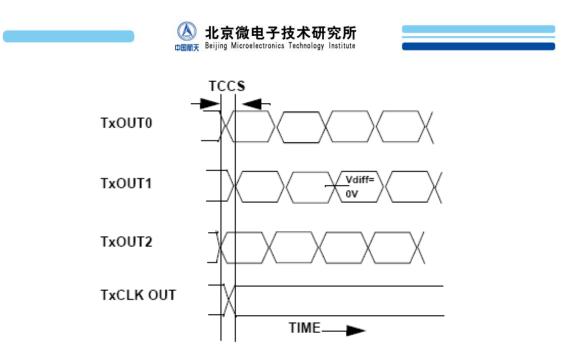
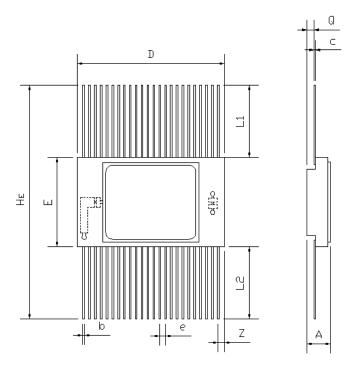
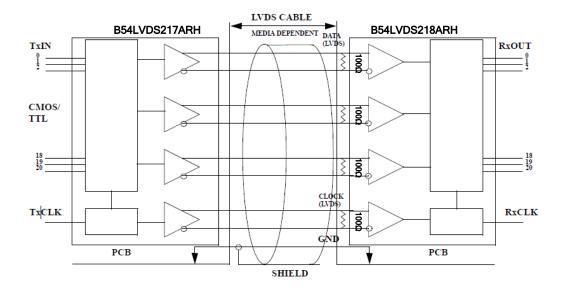
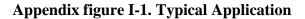



Figure 10. B54LVDS217ARH Channel-to-Channel Skew

8. Package Specifications




Table 4 Package	e Size
-----------------	--------

Ch-al	Value (unit: mm)					
Symbol	Min	Normal	Max			
A			3.40			
b	0.20		0.51			
С	0.07		0.22			
е		0.635				
D	15.675		16.075			
E	9.452		9.852			
L1	1.924		8.024			
L2	1.924		8.024			
H_E	13.70		25.50			
Q	0.13		0.55			
Ζ			1.27			

9. Appendix I Application Information

Typical Application

The CHANNEL LINK devices (B54LVDS217ARH and B54LVDS218ARH) are intended to be used in a wide variety of data transmission applications. The use of serialized LVDS data lines in these applications allows for efficient signal transmission over a narrow bus width, thereby reducing cost, power, and space. Depending upon the application the interconnecting media may vary. For example, for lower data rate (clock rate) and shorter cable lengths (< 2m), the media electrical performance is less critical. For higher speed/long distance applications the media's performance becomes more critical. Certain cable constructions provide tighter skew (matched electrical length between the conductors and pairs). Additional applications information can be found in the following Interface Application Notes:

> Cables

A cable interface between the transmitter and receiver needs to support the differential LVDS pairs. The ideal cable/connector interface would have a constant 100Ω differential impedance throughout the path. It is also recommended that cable skew remain below 100ps (@ ≥ 60 MHz clock rate) to maintain a sufficient data

sampling window at the receiver. Some of the more commonly used cable types for point-to-point applications include flat ribbon, flex, twisted pair and Twin-Coax.

All are available in a variety of configurations and options. Flat ribbon cable, flex and twisted pair generally perform well in short point-to-point applications while Twin-Coax is good for short and long applications. When using ribbon cable, it is recommended to place a ground line between each differential pair to act as a barrier to noise coupling between adjacent pairs. For Twin-Coax cable applications, it is recommended to utilize a shield on each cable pair.

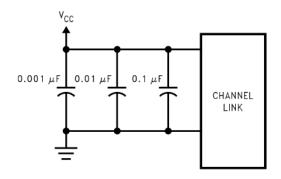
> Termination

Use of current mode drivers requires a terminating resistor across the receiver inputs. The CHANNEL LINK chipset will normally require a single 100Ω resistor between the true and complement lines on each differential pair of the receiver input. The actual value of the termination resistor should be selected to match the differential mode characteristic impedance (90Ω to 120Ω typical) of the cable. Figure I-1 shows an example. Surface mount resistors are recommended to avoid the additional inductance that accompanies leaded resistors. These resistors should be placed as close as possible to the receiver input pins to reduce stubs and effectively terminate the differential lines.

Unused inputs

All unused inputs at the TxIN inputs of the driver must then be tied to VSS.

Cold Spare


All pins have Cold Spare buffers. These buffers will be high impedance when VDD is tied to VSS. But the CMOS outputs (pin 3,5,11,and 14) should not be used as cold spared pins when VDD is not tied to VSS.

Bypassing capacitor

Bypassing capacitors are needed to reduce the impact of switching noise which could limit performance. For a conservative approach three parallel-connected decoupling capacitors (Multi-Layered Ceramic type in surface mount form factor) between each V_{DD} and the ground plane(s) are recommended. The three capacitor values are 0.1 μ F, 0.01 μ F and 0.001 μ F. An example is shown in Figure I-2. The designer should employ wide traces for power and ground and ensure each

capacitor has its own via to the ground plane. If board space is limiting the number of bypass capacitors, the PLL Vcc should receive the most filtering/bypassing. Next would be the LVDS Vcc pins and finally the logic Vcc pins

Appendix figure I-2. B54LVDS217ARH Decoupling Configuration

Clock jitter

The CHANNEL LINK devices employ a PLL to generate and recover the clock transmitted across the LVDS interface. The width of each bit in the serialized LVDS data stream is one-seventh the clock period. For example, a 75 MHz clock has a period of 13.33 ns which results in a data bit width of 1.90 ns. Differential skew (Δt within one differential pair), interconnect skew (Δt of one differential pair to another) and clock jitter will all reduce the available window for sampling the LVDS serial data streams. Care must be taken to ensure that the clock input to the transmitter be a clean low noise signal, especially low frequency component less than 1MHz. Individual bypassing of each V_{cc} to ground will minimize the noise passed on to the PLL, thus creating a low jitter LVDS clock. These measures provide more margin for channel to channel skew and interconnect skew as a part of the overall jitter/skew budget.

10. Appendix II Replaced Product

Device Type	Substituted Device Type
B54LVDS217ARH	Aeroflex UT54LVDS217

Service & Support:

Address:No.2 Siyingmen N. Road. Donggaodi. Fengtai District. Beijing,China. Department: Department of international cooperation Telephone: +86(0)10-68757343 Email: gjhz@mxtronics.com Fax: +86(0)10-68757706 Zip code: 100076