

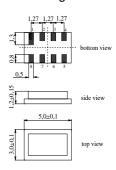
Data Sheet B7304

B7304

Low-Loss Filter for Mobile Communication

225,0 MHz

Data Sheet


Chip Sized SAW Package DCS8A

Features

- Low-loss IF filter for mobile telephone
- Channel selection in GSM, PCN, PCS systems
- Chip Sized SAW Package
- expansion coil for minimum insertion attenuation and optimum bandwidth adjustment

Terminals

Gold-plated Ni

Dimensions in mm, approx. weight 0,05 g

Pin configuration

1, 2 Input balanced5, 6 Output balanced3, 4, 7 Ground

8 Expansion coil

Туре	Ordering code	Marking and Package according to	Packing according to
B7304	B39231-B7304-A910	C61157-A7-A65	F61074-V8102-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T_{A}	- 25/+ 80	°C
Storage temperature range	$T_{\rm stg}$	- 40/+ 85	°C
DC voltage	$V_{\rm DC}$	3	V
Source power	P_{s}	10	dBm

B7304

Low-Loss Filter for Mobile Communication

225,0 MHz

Data Sheet

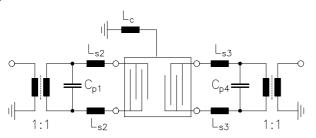
Characteristics

Operating temperature range: $T = -25 \,^{\circ}\text{C} \dots +80 \,^{\circ}\text{C}$ Terminating source impedance: $Z_{\text{S}} = 1000 \,\Omega \,|| -1,2 \,\text{pF}$ Terminating load impedance: $Z_{\text{L}} = 1000 \,\Omega \,|| -1,2 \,\text{pF}$

		min.	typ.	max.	
Nominal frequency	f_{N}	_	225,00	_	MHz
Maximum insertion attenuation	α_{max}	_	5,5	6,5	dB
(Including losses in matching circuit)					
Amplitude ripple (p-p)	$\Delta \alpha$				
$f_{\rm N}$ - 65.0 kHz $f_{\rm N}$ + 65.0 kHz			0,3	2,0	dB
$f_{\rm N}$ - 70.0 kHz $f_{\rm N}$ + 70.0 kHz		_	0,4	3,0	dB
Group delay ripple (p-p)	Δau				
$f_{\rm N}$ - 70.0 kHz $f_{\rm N}$ + 70.0 kHz		_	0,8	2,5	μs
Relative attenuation (relative to α_{max})	α_{rel}				
f_{N} - 25,00 MHz f_{N} - 3,00 MHz		45	66	_	dB
f_{N} - 3,00 MHz f_{N} - 1,60 MHz		43	64	_	dB
f_{N} - 1,60 MHz f_{N} - 0,60 MHz		38	49	_	dB
f_{N} - 0,60 MHz f_{N} - 0,40 MHz		27	33	_	dB
$f_{\rm N}$ - 0,40 MHz $f_{\rm N}$ - 0,23 MHz		8	16		dB
$f_{\rm N}$ + 0,23 MHz $f_{\rm N}$ + 0,40 MHz		8	14		dB
$f_{\rm N}$ + 0,40 MHz $f_{\rm N}$ + 0,60 MHz		27	30	_	dB
$f_{\rm N}$ + 0,60 MHz $f_{\rm N}$ + 1,60 MHz		38	43	_	dB
f_{N} + 1,60 MHz f_{N} + 3,00 MHz		43	60	_	dB
$f_{\rm N}$ + 3,00 MHz $f_{\rm N}$ + 25,00 MHz		45	53	_	dB
Impedance within pass band					
Input: $Z_{IN} = R_{IN} C_{IN}$		_	1000 1,2		Ω pF
Output: $Z_{OUT} = R_{OUT} C_{OUT}$		_	1000 1,2	_	Ω pF
Temperature coefficient of frequency 1)	TC_{f}	_	-0,039		ppm/K ²
Frequency inversion point	T_0	_	25	_	°C

¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

B7304


Low-Loss Filter for Mobile Communication

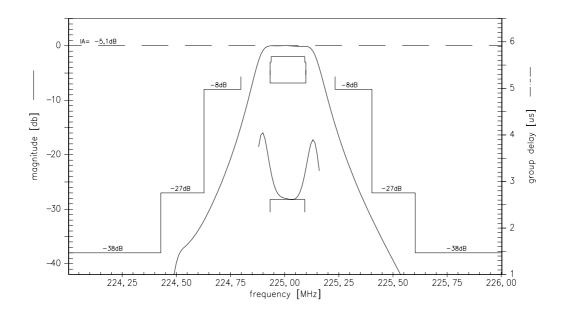
225,0 MHz

Data Sheet

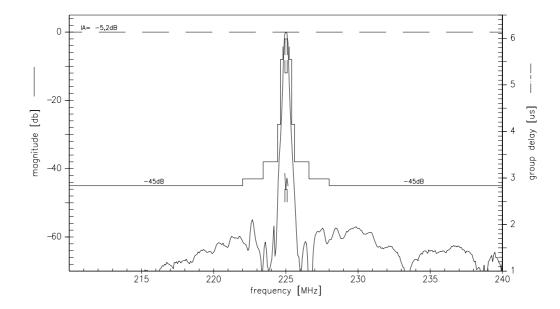
Test matching network to 50\Omega, low pass example (actual element values depend on PCB layout. S-parameters of transformers TOKO B5FL available on request):

$$\begin{array}{ll} L_c &= 82 \text{ nH} \mid\mid 1.8 \text{ pF} \\ C_{p1} &= C_{p4} = 2.2 \text{ pF} \\ L_{s2} &= L_{s3} = 39 \text{ nH} \end{array}$$

B7304


Low-Loss Filter for Mobile Communication

225,0 MHz


Data Sheet

Transfer function (pass band):

Transfer function (wide band):

B7304

Low-Loss Filter for Mobile Communication

225,0 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC WT PD P.O. Box 80 17 09, D-81617 München

© EPCOS AG 2001. All Rights Reserved. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

The information contained in this brochure describes the type of component and shall not be considered as guaranteed characteristics. Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.