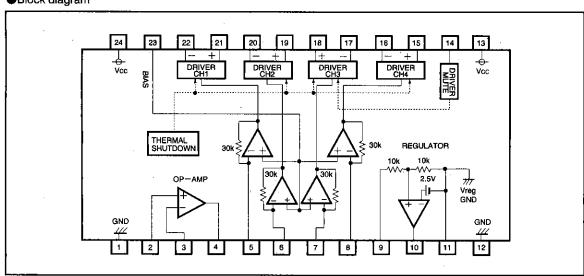
4-channel H-bridge type BTL driver for CD players BA6899AS

The BA6899AS is a 4-channel H bridge BTL driver designed for CD player motor and actuator drives. The internal 5V regulator and standard operational amplifier make this IC suitable for a wide spectrum of applications.

Applications


CD players and CD-ROM drives

Features

- 1) 4-channel H bridge BTL driver.
- SDIP-M 24 pin package, for excellent package power.
- 3) Wide dynamic range.

- 4) Internal thermal shutdown circuit.
- 5) Gain is adjustable with an attached resistor.
- Internal 5V regulator. (requires attached PNP transistor)
- 7) Standard operational amplifier.

Block diagram

●Absolute maximum ratings (Ta=25℃)

Parameter	Symbol	Limits	Unit	
Power supply voltage	Vcc	18	V	
Power dissipation	Pd	3.1*	w	
Operating temperature range	Topr	-30~85	c	
Storage temperature range	Tstg	−55 ~150	C	

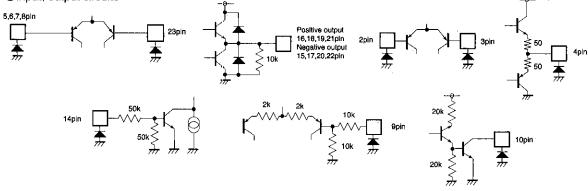
* Unmounted

Reduced by 24.8 mW for each increase in Ta of 1℃ over 25℃.

●Recommended operating conditions (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	6	_	14	V

- *1.4-14 V when the regulator is not used
- *2. When the regulator is not used, pins 9 and 10 may be left open.

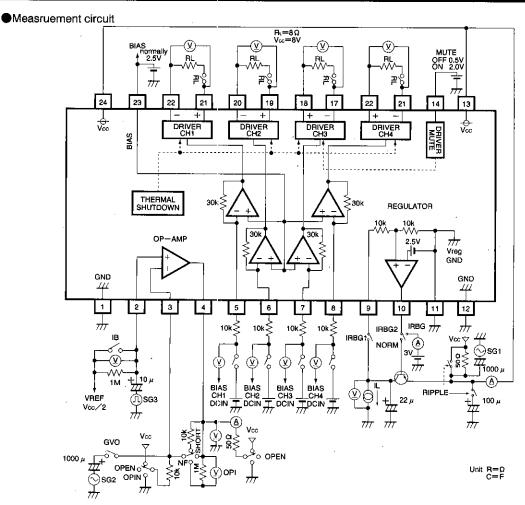

Pin description

Pin No.	Pin name	Function		
1	GND	Substrate ground		
2	OPIN+	Operational amplifier positive input		
3	OPIN-	Operational amplifier riegative input		
4	OPOUT	Operational amplifier output		
5	VIN1	Channel 1 input		
6	VIN2	Channel 2 input		
7	VIN3	Channel 3 input		
8	VIN4	Channel 4 input		
9	REGOUT	5 V output (Note 3)		
10	REGB	External PNPTr base connection pin		
11	RGND	Regulator ground		
12	GND	Substrate ground		

Pin No.	Pin name	Function		
13	Vcc	Vcc		
14	MUTE	Mute control		
15	VO4-	Channel 4 negative output		
16	VO4+	Channel 4 positive output		
17	VO3—	Channel 3 negative output		
18	VO3+	Channel 3 positive output		
19	VO2+	Channel 2 positive output		
20	VO2-	Channel 2 negative output		
21	VO1+	Channel 1 positive output		
22	VO1-	Channel 1 negative output		
23	BIAS	Bias input		
24	Vcc	Vcc		

- *1 "Driver positive output" and "driver negative output" represent polarity relative to input.
- *2 Pin 11 is the ground for the regulator and the internal voltage, and so should be connected to GND even when the regulator is not used.
- *3 Connect to an attached PNP transistor collector.

Input/output circuits


450

lacktriangle Electrical characteristics (Unless otherwise noted, Ta=25 $^{\circ}$ C, Vcc=8V, RL=8 Ω)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
⟨Driver⟩ *1						
Quiescent voltage	la	2.5	4.7	7.0	mA	No load
Input offset voltage	Voi	- 5	0	5	mV	
Output offset voltage	V∞	- 5	0	5	mV	
Dead zone width	Vов	10	20	30	mV	Total for positive and negative.
Maximum output amplitude	Vом1	5.6	6.0	_	٧	Differential output
Voltage gain	Gvc1	6.8	10.3	13.8	dB	Vin = 500 mV DC, differential output
Total voltage gain for positive and negative	∆Gvc1	-1.0	0	1.0	dB	Vin = 500 mV DC, differential output
Ripple rejection ratio	RR	_	80		dB	V _{IN} =0.1Vrms、100Hz
MUTE-OFF voltage	VMOFF	_		0.5	٧	*2
MUTE-ON voltage	Vmon	2.0	_	_	٧	*2
⟨5 V regulator⟩						
Output voltage	VREG	4.75	5.00	5.25	٧	IL=100mA
Output load variation	ΔVal	-50	0	10	mV ·	IL=0~200mA
Input variation	Δ Vvcc	-10	. 0	-60	mV	(Vcc=6~14V) IL=100mA
Drop voltage	VDIF	-	0.3	0.6	٧	V∞=4.7V、IL=200mA*3
Vreg amplitude output current	IREG	8	20	_	mA	=4.7V、When 3V is added *4
Operational amplifier						
Offset voltage	Vopop	-5	0	5	mV	
Input bias current	Івор	_		300	nA	
Output voltage, high level	Vонор	6.5	7.2	_	V	
Output voltage, low level	Volop	-		1.8	٧	
Output drive voltage (sink)	Isink	10	40		mA	50 Ω at V
Output drive voltage (source)	Isource	10	40		mA	50 Ω at GND
Open loop voltage gain	Gvo	_	72	_	dB	V _{IN} =-75dBV、1kHz
Slew rate	SR	_	1		V/ μs	

O Not designed for radiation resistance.

- *1 The drive limits when input resistance is 10 k Ω .
- *2 Only channel 3 (output from pins 17 and 18) is muted.
- *3 Under conditions in which the power transistor satisfies the characteristic Vsat < 0.2 V when ic = 200 mA.
- *4 Pin 9 = open

Circuit description

1. Driver

Inputs to the IC are the focus tracking error signal from the servo preamplifier and the control signal from the motor. The input signals normally center on 2.5V and switch polarity depending on voltage size relative to the bias voltage. When polarity is switched, power

Fig. 1

transistors Q1 and Q4 or Q2 and Q3 turn on. Power transistor Q1 or Q3, whichever is turned on, is driven by the full wave rectified signal and the level shifted signal, and supplies current to the load. When there is no input, both output pins are at the ground level.

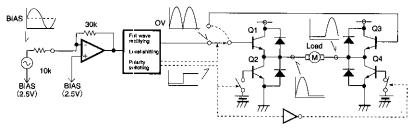


Fig. 2

For CDs/CD-ROMs

2 Regulator

This is a typical series regulator that generates a reference voltage internally. A PNP low saturation transistor must be connected.

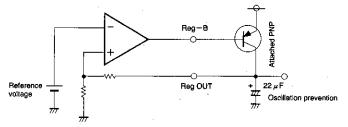


Fig. 3

3. Operational amplifier A standard 4558 type.

Application example

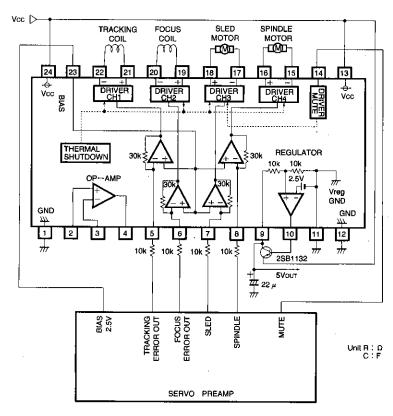


Fig. 4

Operation notes

- The BA6899AS has an internal thermal shutdown circuit. The output voltage is muted when chip temperature exceeds 175°C (typically).
- With the BA6899AS, channel 3 (the pin 17 and 18 output driver) can be muted alone by raising the pin 14 voltage above 2V. This pin should be kept below 0.5V during normal operation.
- Muting also occurs when the bias pin (23 pin) voltage drops below 1.4V (typically). Keep this pin above 1.6V during normal operation.
- All four driver output channels are muted during thermal shutdown, muting and a drop in bias pin voltage. No other components are muted.
- 5. Dead zone width is calculated as follows: Dead zone width=input resistance×1 µ A Temperature change in the dead zone width is -4000ppm for each degree.

- 6. The temperature characteristics of gain are 4000ppm/°C (typically).
- 7. Attach a bypass capacitor (roughly 0.1 μ F) to the power supply, at the base of the IC.
- Because of the input pins' high gain, connecting a long wire to it may result in output oscillation due to free capacitance. Use caution when designing wires.
- The capacitor between regulator output (9 pin) and GND also serves to prevent oscillation of the IC, so select one with good temperature characteristics.
- Set input resistance so that the input current does not exceed 1mA. Exceeding this can result in malfunctioning, particularly at low temperatures.

Electrical characteristic curves

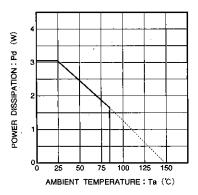


Fig. 5 Thermal derating curve (unmounted)

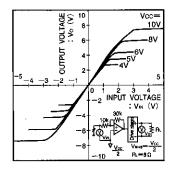


Fig. 6 Driver I/O characteristics (variable power supply)

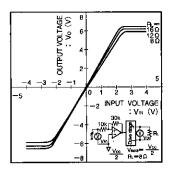
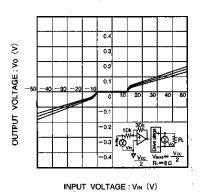
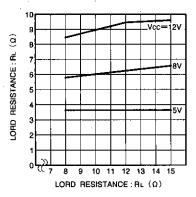
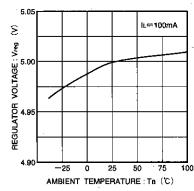
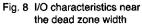




Fig. 7 Driver I/O characteristics (variable load)

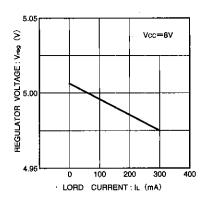

Fig. 8. I/O characteristics no

Fig. 9 Load resistance vs. maximum output amplitude

180

Fig. 10 Regulator voltage vs. temperature characteristics

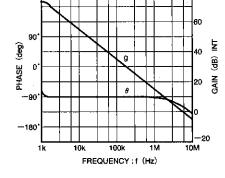
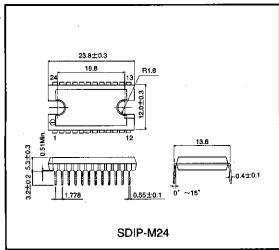



Fig. 11 Load current vs. regulator voltage

Fig. 12 Operational amplifier vs. open loop characteristics

●External dimensions (Units: mm)

Notes

- The contents described in this catalogue are correct as of March 1997.
- No unauthorized transmission or reproduction of this book, either in whole or in part, is permitted.
- The contents of this book are subject to change without notice. Always verify before use that the contents are the latest specifications. If, by any chance, a defect should arise in the equipment as a result of use without verification of the specifications, ROHM CO., LTD., can bear no responsibility whatsoever.
- Application circuit diagrams and circuit constants contained in this data book are shown as examples of standard use and operation. When designing for mass production, please pay careful attention to peripheral conditions.
- Any and all data, including, but not limited to application circuit diagrams, information, and various data, described in this catalogue are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO., LTD., disclaims any warranty that any use of such device shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes absolutely no liability in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices; other than for the buyer's right to use such devices
 itself, resell or otherwise dispose of the same; no express or implied right or license to
 practice or commercially exploit any intellectual property rights or other proprietary rights
 owned or controlled by ROHM CO., LTD., is granted to any such buyer.
- The products in this manual are manufactured with silicon as the main material.
- The products in this manual are not of radiation resistant design.

The products listed in this catalogue are designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers, or other safety devices) please be sure to consult with our sales representatives in advance.

Notes when exporting

- It is essential to obtain export permission when exporting any of the above products when it falls under the category of strategic material (or labor) as determined by foreign exchange or foreign trade control laws.
- Please be sure to consult with our sales representatives to ascertain whether any product is classified as a strategic material.