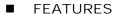


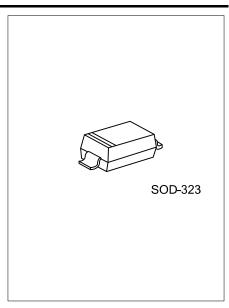
UNISONIC TECHNOLOGIES CO., LTD


BAS316 Preliminary DIODE

HIGH-SPEED DIODE

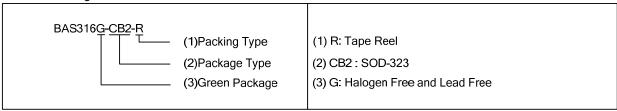
DESCRIPTION

The UTC BAS316 is high-speed diode, it uses UTC's advanced technology to provide customers with high switching speed, etc.


The UTC BAS316 is suitable for high-speed switching in e.g. surface mounted circuits.

* High switching speed

SYMBOL



ORDERING INFORMATION

Ordering Number	Package	Pin Assignment		Dooking	
		1	2	Packing	
BAS316G-CB2-R	SOD-323	K	Α	Tape Reel	

Pin Assignment: A: Anode K: Cathode Note:

MARKING

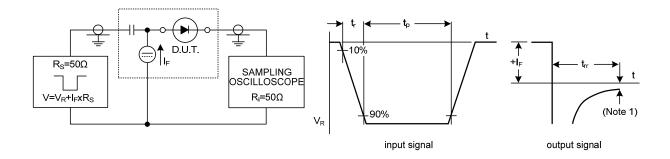
ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT	
repetitive Peak Reverse Voltage		V_{RRM}	85	V	
Continuous Reverse Voltage		V_{R}	75	V	
Continuous Forward Current	T _S =90°C (Note 1)		I _F	250	mA
Repetitive Peak Forward Current		I _{FRM}	500	mA	
Non-Repetitive Peak Forward Current	Square Wave, T _. =25°C Prior to Surge	t=1µs		4	Α
		t=1ms	I_{FSM}	1	Α
		t=1s	0.5	Α	
Total Power Dissipation	T _S =90°C (Note 1)		P_{D}	400	mW
Operating Junction Temperature		T_J	150	°C	
Storage Temperature		T _{STG}	-65~+150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL CHARACTERISTICS

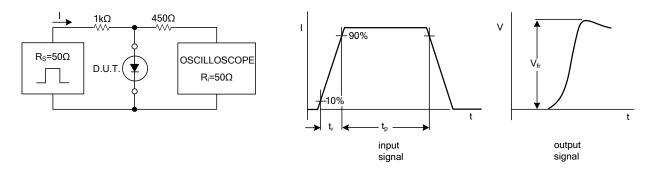
PARAMETER	SYMBOL VALUE		UNIT
Junction to Soldering Point (Note 2)	θ_{JS}	150	K/W


Notes: 1. T_S is the temperature at the soldering point of the cathode tab.

2. Soldering point of the cathode tab.

■ ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Forward Voltage	V _F	I _F =1mA			715	mV
		I _F =10mA			855	mV
		I _F =50mA			1	V
		I _F =150mA			1.25	V
Reverse Current	I _R	V _R =25V			30	nA
		V _R =75V			1	μΑ
		V _R =25V, T _J =150°C			30	μA
		V _R =75V, T _J =150°C			50	μA
Diode Capacitance	C_D	f=1MHz, V _R =0			1.5	pF
Reverse Recovery Time	t _{rr}	When Switched from I_F =10mA to I_R =10mA, R_L =100 Ω , Measured at I_R =1mA, See Fig.1			4	ns
Forward Recovery Voltage	V_{fr}	When Switched from I_F =10mA, t_r =20ns, See Fig.2			1.75	V


■ TEST CIRCUITS AND WAVEFORMS

Note 1. I_R=1mA.

Input signal: reverse pulse rise time t_r =0.6ns; reverse voltage pulse duration t_p =100ns; duty factor δ =0.05; Oscilloscope: rise time t_r =0.35ns.

Fig.1 Reverse Recovery Voltage Test Circuit and Waveforms.

Input signal: forward pulse rise time t_r =20ns; forward current pulse duration t_p ≥100ns; duty factor δ ≤ 0.005.

Fig.2 Forward Recovery Voltage Test Circuit and Waveforms.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.