

MECHANICAL DATA Dimensions in mm (inches)

GENERAL PURPOSE SMALL SIGNAL PNP BIPOLAR TRANSISTOR

APPLICATIONS

The BC 177, BC 178 & BC 179 are silicon epitaxial planar PNP transistors in TO-18 metal case. They are suitablefor use in driver audio stages, low noise input audio stages and as low power, high gain general purpose transistors.

FEATURES

- SILICON NPN
- HERMETICALLY SEALED TO18
- SCREENING OPTIONS AVAILABLE

TO-18 METAL PACKAGE

Underside View

PIN 1 – Emitter PIN 2 – Base PIN 3 – Collector

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise stated)			BC178	BC179
V _{CBO}	Collector – Base Continuous Voltage	-50V	-30V	-25V
V _{CEO}	Collector – Emitter Continuous Voltage With Zero Base Current	-45V	-25V	-20V
V _{CES}	Collector – Emitter Continuous Voltage With Base Shortcircuited to Emitter	-50V	-30V	-25V
V_{EBO}	Emitter – Base Continuous Voltage Reverse Voltage	-5V		
۱ _C	Continuous Collector Current	-0.1A		
PD	Power Device Dissipation @ $T_A = 25^{\circ}C$	0.3W		
	Derate above 25°C	500W/°C		
PD	Power Device Dissipation @ $T_{C} = 25^{\circ}C$,	0.75W		
	Derate above 25°C	200W/°C		
T _{j,} T _{stg}	Operating and Storage Junction to Case	-65 to +175°C		

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

BC177 BC178 BC179

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise stated)

	Parameter Collector-Emitter Leakage Current	Test Conditions		Min.	Тур.	Max.	Unit	
1		$V_{CE} = -20V$	$V_{BE} = 0$			-100	nA	
I _{CES}			T _{amb} = 150°C			-10	μA	
V _{(BR)CBO}	Collector Base Breakdown Voltage	$I_{\rm C} = -10\mu A$	BC177	-50			V	
			BC178	-30			V	
			BC179	-25				
	Collector Emitter Breakdown Voltage	I _C = -2mA	BC177	-45			- V - V	
V _{(BR)CEO}		I _E = 0	BC178	-25				
			BC179	-20				
V _{(BR)EBO}	Emitter Breakdown Voltage	I _E = -10μΑ	$I_{\rm C} = 0$	-5			V	
	DC Current Gain	$V_{CE} = -5V$	BC177A	125		260	-	
		I _C = -2mA	BC177B	240		500		
h		f = 1kHz	BC178A	125		260		
h _{FE}			BC178B	240		500		
			BC179A	125		260		
			BC179B	240		500		
V	Collector – Emitter Saturation Voltage	I _B = -0.5mA	I _C = -10mA		-0.075	-0.25	V	
V _{CE(sat)}		I _B = -5mA	I _C = -100mA		-0.2		V	
V	Base – Emitter Saturation Voltage	I _B = -0.5mA	I _C = -10mA		-0.72	-0.8	V	
V _{BE(sat)}		I _B = -5mA	I _C = -100mA		-0.86			
V _{BE(on)}	Base – Emitter on Voltage	$V_{CE} = -5V$	I _C = -2mA -5V	-0.55	-0.64	-0.75	V	
fT	Transition Frequency	$V_{CE} = -5V$	I _C = -10mA		200			
		f = 100MHz		200		MHz		
NF	Noise Figure	$V_{CE} = -5V$	BC177		2	10	dB	
		f = 1kHz	BC178		2	10		
		I _C = -0.2mA	BC179		1.2	4	1	
C _{cbo}	Collector Base Capacitance	I _C = -0.2mA	V _{CB} = -10V		5.0		pF	

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.