BC7601/BC7602

BLE Transparent Transmission Controller

Features

- 3.3V operating voltage
- Integrated high performance RF and MODEM for enhanced BLE.
- Few external components required as well as on-chip 32 MHz crystal capacitors to reduce the BOM cost.
- Integrated DC/DC converter and LDOs allowing a wider supply range with a single power supply
- Over 75dB RX of gain in programmable gain steps
- Integrated SPI and UART for ACI interfaces
- Includes Sleep and Power Down modes for low power consumption
- Embedded patch memory to reduce system development effort and cost – BC7602 only
- · Package types:
 - BC7601: 32-pin QFN 4mmx4mm
 - BC7602: 46-pin QFN 6.5mmx4.5mm

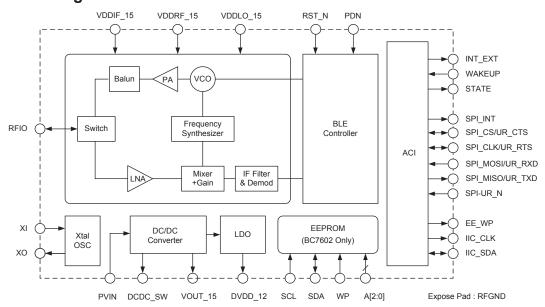
Applications

- · Health care products
- · Smart home appliances
- Beacons

General Description

The BC7601/BC7602 devices are fully-integrated, single-chip Bluetooth Low Energy, BLE, controllers. The devices are specially designed to act as BLE slave controllers in accordance with the Bluetooth specification v4.1.

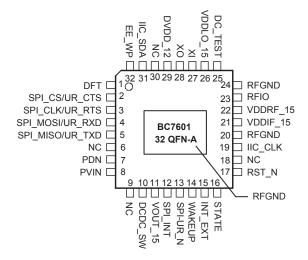
The devices can be controlled by any external microcontroller through the Application Controller Interface, ACI, which is designed to allow the devices to easily communicate with external circuitry. The UART and SPI interfaces are available as the ACI transport layers.

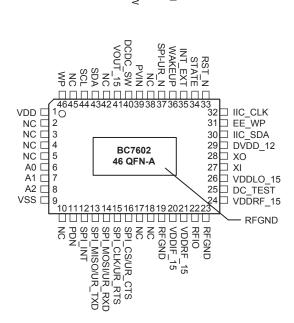

Additionally, during intervals where there is no active BLE RF connection, the devices will enter a Sleep Mode thus further reducing power consumption.

In general practice, the BC7601/BC7602 devices will be required to download a patch code for full BLE optimisation. For convenience and system cost reduction, the BC7602 device already supports an internal patch code and so does not need to patch from the external microcontroller.

BC7602 Order Information

Part Number	Patch Code Version
BC7602-BC1	V1.1


Block Diagram



Rev. 1.20 1 December 15, 2017

Pin Assignment

Rev. 1.20 2 December 15, 2017

Pin Description

BC7601

Name	No	Туре	Description
DFT	1	DI	For normal operation connect to RFGND.
SPI_CS/UR_CTS	2	DI	SPI CS or UART CTS; selected by SPI-UR N during the power-on period
SPI_CLK/UR_RTS	3	DI	SPI CLK or UART RTS; selected by SPI-UR N during the power-on period
SPI_MOSI/UR_RXD	4	DI	SPI MOSI or UART RXD; selected by SPI-UR_N during the power-on period
SPI_MISO/UR_TXD	5	DO	SPI MISO or UART TXD; selected by SPI-UR_N during the power-on period
NC	6	_	No Connection – connect to RFGND
PDN	7	DI	Power down control pin When low the device enters the Power down mode
PVIN	8	Р	Power-supply; 2.2V~3.6V
NC	9	_	No Connection – connect to RFGND
DCDC_SW	10	Р	Switching Output – connect to the switching end of the inductor
VOUT_15	11	Р	1.5V power output
SPI_INT	12	DO	SPI interrupt request when SPI mode is selected
SPI-UR_N	13	DI	SPI/UART mode select pin during the power-on period 1: SPI pins selected 0: UART pins selected
WAKEUP	14	DI	Wake-up pin Enters the Sleep Mode when low
INT_EXT	15	DO	External Interrupt
STATE	16	DO	IC state pin indicator 1: Operating mode 0: Sleep mode
RST_N	17	DI	Hardware reset, active low
NC	18	_	No Connection – connect to RFGND
IIC_CLK	19	DIO	Connect to external host or EEPROM SCL pin. IIC_CLK pin is baud rate selection when UART mode is selected. Where 0: 9600bps, 1: 115200bps.
RFGND	20	Р	RF Power Ground
VDDIF_15	21	Р	Analog power for IF section – connect to VOUT_15
VDDRF_15	22	Р	Analog power for RF section – connect to VOUT_15
RFIO	23	AIO	RF input or output
RFGND	24	Р	RF Power Ground
DC_TEST	25	AO	RF function test pin
VDDLO_15	26	Р	Analog power for RF section, connect to VOUT_15
XI	27	Al	Crystal oscillator input
XO	28	AO	Crystal oscillator output
DVDD_12	29	Р	1.2V internal digital power – connect 0.1µF capacitor to RFGND
NC	30	_	No Connection – connect to RFGND
IIC_SDA	31	DIO	Connect to external host or EEPROM SDA pin
EE_WP	32	DO	Connect to external host or EEPROM WP pin
RFGND	EP	Р	Exposed Pad on package lower side. Internally connected to RFGND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground vias are also required to achieve the noted RF performance.

 $Legend: AI=Analog\ Input; AO=Analog\ Output; AIO=Analog\ In/out;$

DI=Digital Input; DO=Digital Output; DIO=Digital In/Out; P=Power

BC7602

Name	Pin	Туре	Description
VDD	1	Р	EEPROM power supply; 1.8V~3.6V
NC	2	_	No Connection – connect to RFGND
NC	3	_	No Connection – connect to RFGND
NC	4	_	No Connection – connect to RFGND
NC	5	_	No Connection – connect to RFGND
A0	6	DI	EEPROM address A0 input
A1	7	DI	EEPROM address A1 input
A2	8	DI	EEPROM address A2 input
VSS	9	Р	EEPROM Digital ground - connect to RFGND
NC	10	_	No Connection - connect to RFGND
			Power down control pin
PDN	11	DI	When low the device enters the Power down mode
SPI_INT	12	DO	SPI interrupt request when SPI mode is selected
SPI_MISO/UR_TXD	13	DO	SPI MISO or UART TXD; selected by SPI-UR_N during the power-on period
SPI_MOSI/UR_RXD	14	DI	SPI MOSI or UART RXD; selected by SPI-UR N during the power-on period
SPI_CLK/UR_RTS	15	DI	SPI CLK or UART RTS; selected by SPI-UR_N during the power-on period
SPI_CS/UR_CTS	16	DI	SPI CS or UART CTS; selected by SPI-UR N during the power-on period
NC	17	_	No Connection – connect to RFGND
NC	18	_	No Connection – connect to RFGND
RFGND	19	Р	RF Power Ground
VDDIF_15	20	P	Analog power for IF section – connect to VOUT_15
VDDRF 15	21	P	Analog power for RF section – connect to VOUT_15
RFIO	22	AIO	RF input or output
RFGND	23	P	RF Power Ground
	24	Р	Analog power for RF section – connect to VOUT_15
VDDRF_15			
DC_TEST	25 26	AO P	RF function test pin
VDDLO_15	27		Analog power for RF section – connect to VOUT_15
		AI	Crystal oscillator input
XO	28	AO	Crystal oscillator output
DVDD_12	29	Р	1.2V internal digital power – connect 0.1µF capacitor to RFGND
IIC_SDA	30	DIO	Externally connected to SDA pin
EE_WP	31	DIO	Externally connected to WP pin
IIC_CLK	32	DO	Externally connected to SCL pin
RST_N	33	DI	Hardware reset input, active low
STATE	34	DO	IC state pin indicator
SIAIE	34	DO	1: Operating mode 0: Sleep mode
INT_EXT	35	DO	External Interrupt
			Wake-up pin
WAKEUP	36	DI	Enters the Sleep Mode when low
			SPI/UART mode select pin during the power-on period
SPI-UR_N	37	DI	1: SPI pins selected
			0: UART pins selected
NC	38	_	No Connection – connect to RFGND
PVIN	39	Р	Power-supply; 2.2V~3.6V
DCDC_SW	40	Р	Switching Output - connect to the switching end of the inductor
VOUT_15	41	Р	1.5V power output
NC	42	_	No Connection – connect to RFGND
SDA	43	DIO	EEPROM SDA

Name	Pin	Туре	Description
SCL	44	DI	EEPROM SCL
NC	45	_	No Connection – connect to RFGND
WP	46	DI	EEPROM WP
RFGND	EP	Р	Exposed Pad on the lower side of the package. Internally connected to RFGND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground vias are also required to achieve the noted RF performance.

Legend: AI=Analog Input; AO=Analog Output; AIO=Analog In/out;

DI=Digital Input; DO=Digital Output; DIO=Digital In/Out; P=Power

Absolute Maximum Ratings

Supply Voltage V_{IN} -0.3V to V_{IN} +4.3V	Storage Temperature50°C to 125°C
Input Voltage V_{IN} -0.3V to V_{IN} +0.3V	Operating Temperature20°C to 85°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
V _{IN}	Power supply voltage(*)	_	2.2(*)	3.3	3.6	V	
Digital Inp	igital Inputs						
V _{IH}	High level input voltage	_	0.7 × V _{IN}	_	_	V	
V _{IL}	Low level input voltage	_	_	_	0.2 × V _{IN}	V	
I _{IH}	High level input current	_	_	10	_	μA	
I _{IL}	Low level input current	_	_	10	_	μA	
Cı	Input capacitance	_	_	5	_	pF	
Digital Outp	Digital Outputs						
V _{OH}	High level output voltage	I _{OH} = 1mA	V _{IN} -0.5	_	_	V	
V _{OL}	Low level output voltage	I _{OL} = 1mA	_	_	0.5	V	
l _{oz}	High impedance output current	_	_	_	1	μΑ	
Supply cur	rrent (Ta=25°C, V _{IN} =3.3V, unless	otherwise specified)					
I _{RX}	Rx mode	_	_	14.5	_	mA	
I _{TX}	TX mode, 0 dBm output power	_	_	9	_	mA	
I _{SLEEP}	Idle mode when MCU sleep	_	_	13	20	uA	
I _{ACT}	Idle mode when MCU active	_	_	2	_	mA	
I _{PDN}	Power down	_	_	280	360	nA	

Note: If the BC760x device is operating under the condition where V_{IN} <2.2V, the LDO mode must be selected. However this will consume more power.

Rev. 1.20 5 December 15, 2017

A.C. Characteristics

Symbol		Parameter	Min.	Тур.	Max.	Unit
Crystal Os	cillator					
f	Frequency		_	32	_	MHz
	Frequency accuracy requirement		-40	_	40	ppm
ESR	Equivalent series	resistance	_	_	100	Ω
C0	Crystal shunt cap	acitance	1.5	7	_	pF
CL	Crystal load capa	citance	8	12	16	pF
RX Charac	teristics					
D	Sensitivity		_	-90	_	dBm
P _{SENS}	Sensitivity (dirty o	n)	_	-88	_	dBm
P _{IN}	Maximum input po	ower	_	-5	_	dBm
CI0		Co-channel interference	_	12	_	dB
CI1		Interferer at f _{OFFS} = +/- 1MHz	_	-2/4	_	dB
CI2	In-band blocking	Interferer at f _{OFFS} = +/- 2MHz	_	-25/-35	_	dB
CI3	in-band blocking	Interferer at f _{OFFS} = +/- 3MHz	_	-40/-40	_	dB
CI4		Interferer at f _{IMAGE}	_	-35	_	dB
CI5		Interferer at f _{IMAGE} +/- 1MHz	_	4/-38	_	dB
		f = 30~2000MHz	_	-20	_	dBm
		f = 2000~2399MHz	_	-25	_	dBm
	Out-of-band block	f = 2484~3000MHz	_	-25	_	dBm
		f = 3000~12750MHz	_	-30	_	dBm
		erformance for desired signal at -64dBm 3rd, 4th and 5th offset channel	_	-40	_	dBm
TX Charac	teristic					
P _{TX}	Output power		-18	_	+3	dBm
	TX RF output step	DS .	_	6	_	dB
ΔF2AVG	Average frequence	y deviation for 10101010 pattern	_	230	_	KHz
ΔF1AVG	Average frequence	y deviation for 11110000 pattern	_	260	_	KHz
EO	Eye opening = ΔF	⁻ 2AVG/ΔF1AVG	_	0.88	_	
	Frequency accura	асу	-50	_	+50	KHz
	Maximum frequer	ncy drift	_	30	_	KHz
	Initial frequency d	_	10	_	KHz	
FDR	Drift rate	_	0.2	_	KHz/50us	
	Spurious F	requency < 2.4GHz	_	-50	_	dBm
	l ' ⊢	Frequency in 2.4-12 GHz	_	-40	_	dBm
		S f ± 2MHz (f=2400~2483.5MHz, P _{TX} =0dBm)	_	-51	_	dBm
	emissions	F f ± 3MHz (f=2400~2483.5MHz, P _{TX} =0dBm)	_	-55	_	dBm

Functional Description

Introduction

These devices are fully-integrated, single-chip Bluetooth Low Energy, BLE, controllers. The devices are specially designed to act as BLE slave devices in accordance with the Bluetooth specification v4.1. The devices can be controlled by any external microcontroller through the Application Controller Interface, ACI, which is specially designed to allow easy communication with external circuitry. The UART and SPI interfaces are available as the ACI transport layers. Additionally, during any time intervals where there is no active BLE RF connection, the devices will enter the Sleep Mode which can further reduce the power consumption. As the complexity of BLE RF controllers does not permit comprehensive RF operation information to be provided in this datasheet, the reader should therefore refer to the corresponding user manuals for a detailed understanding of the BLE RF.

Controller Interface

Application Controller Interface

The BC760x device includes an Application Controller Interface which supports two different transport layers selected according to the logic level of the STATE and SPI-UR N pins during power-on.

- STATE/SPI-UR_N with pull-high resistor selects the SPI interface
- STATE/SPI-UR_N with pull-down resistor selects the UART interface

For the SPI interface, the Write FIFO command must be sent first for each CMD from the host to the devices while the read FIFO command must be sent first for each Return operation. For the UART interface the write FIFO and read FIFO commands are not required. Data follows the little-endian format whose commands are shown in Figure 1.

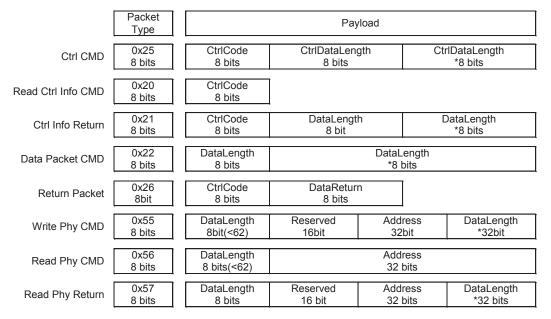


Figure 1. BC7601/BC7602 ACI Protocol

Rev. 1.20 7 December 15, 2017

SPI Interface

The BC760x devices include a 5-wire, 8-bit, MSB-first, Motorola-compatible with CPOL=0 and CPHA=0 slave SPI interface. The slave SPI interface has the following characteristics.

- SPI clock speed up to 10 MHz
- Supports mode 0 only
- Integrated 32 byte RX/TX FIFOs for continuous SPI bursts.

Pin Name	In/Out	SPI Description		
SPI_CLK	In	SPI clock		
SPI_MOSI	In	SPI master output slave input		
SPI_MISO	Out	SPI master input slave output		
SPI_CS	In	SPI CS, active low.		
SPI_INT	Out	SPI interrupt request		
Note: The SPI-UR_N pin is pulled high during power-on				
period.				

Table 1. SPI Pin Function

· Protocol and Timing

The SPI timing diagram is shown in Figure 2.

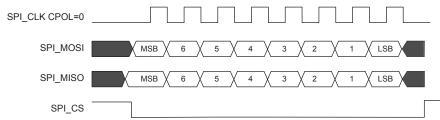


Figure 2. SPI Timing Diagram

· SPI command format and timing

The SPI registers can be accessed by both the host and controller for reading or to configure the device registers

SPI Register name	SPI Register Address	Parameter Value Description
Threshold	0x0	bit[11:6]: SPI TX FIFO threshold bit[5:0]: SPI RX FIFO threshold
Int_status	0x01	Interrupt status: bit[4]: SPI RX FIFO not empty bit[3]: SPI RX FIFO overflow bit[2]: SPI RX FIFO over threshold bit[1]: SPI RX FIFO empty bit[0]: SPI RX FIFO under threshold
Int_En	0x02	Interrupt enable control: bit[4]: SPI RX FIFO not empty interrupt bit[3]: SPI RX FIFO overflow interrupt bit[2]: SPI RX FIFO over threshold interrupt bit[1]: SPI RX FIFO empty interrupt bit[0]: SPI RX FIFO under threshold interrupt * set 1 to Enable the corresponding interrupt
Int_Clr	0x03	Interrupt clear control, write only bit[4]: SPI RX FIFO not empty status clear bit[3]: SPI RX FIFO overflow status clear bit[2]: SPI RX FIFO over threshold status clear bit[1]: SPI RX FIFO empty status clear bit[0]: SPI RX FIFO under threshold status clear * set 1 to clear the corresponding status bit
fifoCount	0x04	bit [11:6]: SPI RX FIFO count bit [5:0]: SPI TX FIFO count

Table 2. SPI Interface Register Description

Rev. 1.20 8 December 15, 2017

SPI CMD Format				
CMD Name	Bit [7:5]	Bit[4:0]		
Read Register	000b	Bit [4:1] = SPI Register address, bit[0] =1		
Write Register	001b	Bit [4:1] = SPI Register address, bit[0] =1		
Read FIFO	011b	Bit [4:0] = n, "n" means n bytes where n=0 means 32bytes.		
Write FIFO	101b	Bit [4:0] = n, "n" means n bytes where n=0 means 32bytes.		

Table 3. SPI register and FIFO Operation List

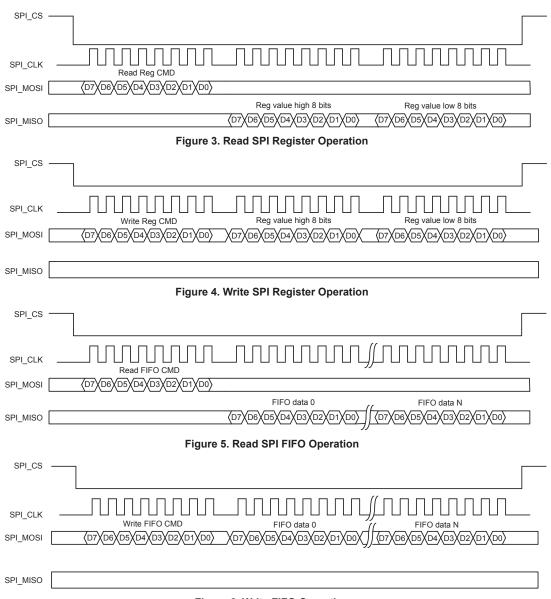


Figure 6. Write FIFO Operation

Rev. 1.20 9 December 15, 2017

UART Interface

The UART interface supports hardware flow control signals, RTS and CTS, with the following features.

- 16 byte transmit and receive FIFOs
- Hardware flow control support (CTS/RTS)
- 8 data bits per character
- Programmable serial data baud rate from 2400 to 256000
- · Connect CTS to VSS when flow control is not used

Pin Name	In/Out	UART Description			
UART_RTS	Out	UART required to send			
UART_RXD	In	UART RX data			
UART_TXD	Out	UART TX data			
UART_CTS In UART clear to send					
Note: The SPI-UR N pin is pulled low during power-on					

Note: The SPI-UR_N pin is pulled low during power-on period.

Table 4. UART Pin Function

I²C Interface

The IIC_SDA, IIC_SCL pins can be used as the I²C interface when the IIC SDA line is pulled high.

Sleep and Wake-up

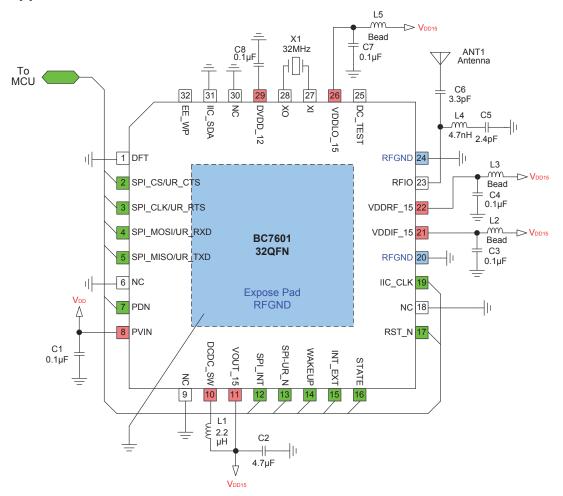
The WAKEUP pin is used to select the device operation mode while the STATE pin is used to indicate the device operation status. The external host controller can check the device operation mode by

monitoring the STATE pin. When the WAKEUP pin is pulled low, the device will enter the Sleep mode and the STATE pin will go low. If the device is in the Sleep Mode, it can be woken up using the WAKEUP pin. When the WAKEUP pin is pulled high, the device will be woken up and the STATE pin will go high.

When the device enters the Sleep Mode, the external master SPI request can also wake up the device. If a high-to-low signal appears on the SPI_CS pin in the Sleep Mode, the device will be woken up and respond to the external host request. After the external master SPI access requests have been served, the device may stay in the operating mode or enter the Sleep Mode again depending upon the WAKEUP pin status.

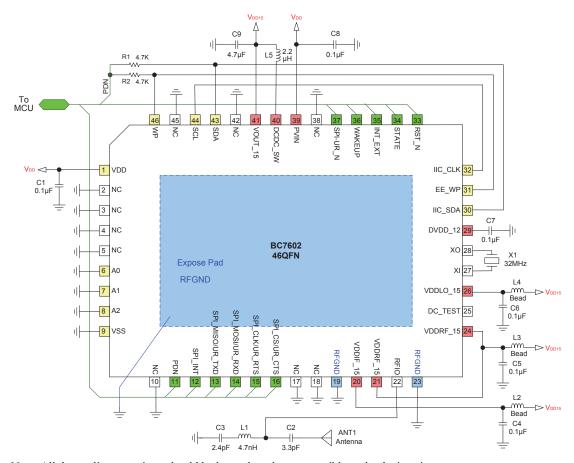
Power Down Mode

The PDN pin is used to power down the device. If the PDN pin is pulled low, the device will enter the power down mode and all internal clocks will be disabled. After the device has been powered down, there is only one way to reactivate the device which is to reset the device by pulling the RST_N pin low and then reinitialising the device.


External Interrupt

The devices provide an INT_EXT pin to output the interrupt signal to an external microcontroller. If the INT_EXT pin status is low, this means that the valid data is ready.

Rev. 1.20 10 December 15, 2017



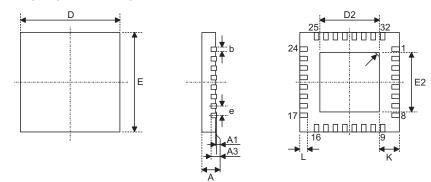
Application Circuits

Rev. 1.20 11 December 15, 2017

Note: All decoupling capacitors should be located as close as possible to the device pins.

Package Information

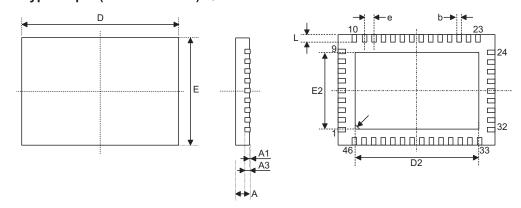
Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>Package/Carton Information</u>.


Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- The Operation Instruction of Packing Materials
- Carton information

Rev. 1.20 December 15, 2017

SAW Type 32-pin (4mm×4mm) QFN Outline Dimensions


Symbol		Dimensions in inch			
Symbol	Min.	Nom.	Max.		
Α	0.028	0.030	0.031		
A1	0.000	0.001	0.002		
A3	_	0.008 BSC	_		
b	0.006	0.008	0.010		
D	_	0.157 BSC	_		
Е	_	0.157 BSC	_		
е	_	0.016 BSC	_		
D2	0.104	0.106	0.108		
E2	0.104	0.106	0.108		
L	0.014	0.016	0.018		
K	0.008	_	_		

Symbol	Dimensions in mm			
	Min.	Nom.	Max.	
A	0.700	0.750	0.800	
A1	0.000	0.020	0.050	
A3	_	0.203 BSC	_	
b	0.150	0.200	0.250	
D	_	4.000 BSC	_	
Е	_	4.000 BSC	_	
е	_	0.40 BSC	_	
D2	2.65	2.70	2.75	
E2	2.65	2.70	2.75	
L	0.35	0.40	0.45	
K	0.20	_	_	

Rev. 1.20 14 December 15, 2017

SAW Type 46-pin (6.5mm×4.5mm) QFN Outline Dimensions

Symbol	Dimensions in inch			
	Min.	Nom.	Max.	
А	0.031	0.033	0.035	
A1	0.000	0.001	0.002	
A3	_	0.008 BSC	_	
b	0.006	0.008	0.010	
D	0.254	0.256	0.258	
E	0.175	0.177	0.179	
е	_	0.016 BSC	_	
D2	0.197	0.201	0.205	
E2	0.118	0.122	0.126	
L	0.012	0.016	0.020	
K	_	_	_	

Symbol	Dimensions in mm			
	Min.	Nom.	Max.	
A	0.800	0.850	0.900	
A1	0.000	0.020	0.040	
A3	_	0.200 BSC	_	
b	0.150	0.200	0.250	
D	6.450	6.500	6.550	
E	4.450	4.500	4.550	
е	_	0.40 BSC	_	
D2	5.00	5.10	5.20	
E2	3.00	3.10	3.20	
L	0.30	0.40	0.50	
K	_	_	_	

Rev. 1.20 15 December 15, 2017

Copyright[©] 2017 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com/en/.

Rev. 1.20 16 December 15, 2017