

BCT2358

1MHz, 60uA, Rail-to-Rail I/O CMOS Operational Amplifiers

GENERAL DESCRIPTION

The BCT2358 (dual) is low cost, rail-to-rail input and output voltage feedback amplifiers. It has a wide input common-mode voltage range and output voltage swing, and take the minimum operating supply voltage down to 2.1V. The maximum recommended supply voltage is 5.5V. It's specified over the extended -40°C to 85°C temperature range.

BCT2358 provides 1MHz bandwidth at a low current consumption of 60uA per amplifier. Very low input bias currents of 10pA enable BCT2358 to be used for integrators, photodiode amplifiers, and piezoelectric sensors. Rail-to-rail input and output are useful to designers for buffering ASIC in single-supply systems. Applications for this series of amplifiers include safety monitoring, portable equipment, battery and power supply control, and signal conditioning and interfacing for transducers in very low power systems. The BCT2358 comes in the Green SOIC-8 packages.

FEATURES

- Low Cost
- Rail-to-Rail Input and Output
- 0.8mV Typical Vos
- Unity Gain Stable
- Gain Bandwidth Product:1MHz
- Very Low Input Bias Current:10pA
- Supply Voltage Range:2.1V to 5.5V
- Input Voltage Range:-0.1V to +5.6V with V_S=5.5V
- Low Supply Current:60uA/Amplifier
- Small Packaging: BCT2358 available in SOIC8

APPLICATIONS

ASIC Input or Output Amplifier

Sensor Interface

Piezoelectric Transducer Amplifier

Medical Instrumentation

Mobile Communication

Audio Output

Portable Systems

Smoke Detectors

Notebook PC

Battery-Powered Equipment

DSP Interface

ORDERING INFORMATION

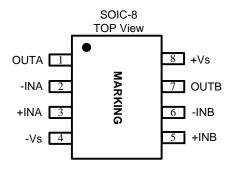
Order Number	Package Type	Temperature Range	Marking	QTY/Reel	
BCT2358ESA-TR	SOIC-8	-40°C to +85°C	2358	3000	

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +Vs to -Vs	0.3V to +6.0V
Common-Mode Input Voltage(-Vs)-0.3	3V to (+Vs)+ 0.3V
Storage Temperature Range	65℃ to +150℃
Junction Temperature	1 50 °C
Operating Temperature Range	40℃ to +85℃
Package Thermal Resistance @ TA=+29	5℃
SOIC-8, θ _{JA}	125°C/W
Lead Temperature (Soldering, 10 sec)	260°C
ESD Susceptibility	
НВМ	4000V
MM	400V

NOTE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. BCTICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Broadchip reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact Broadchip sales office to get the latest datasheet.

Ver 1.0 PIN CONFIGURATION (TOP VIEW)

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	OUTA	Output
2	-INA	Negative Input
3	+INA	Positive Input
4	-Vs	Power Supply
5	+INB	Positive Input
6	-INB	Negative Input t.
7	OUTB	Output
8	+Vs	Power Supply

ELECTRICAL CHARACTERISTICS

 $(V_S = +5V, RL = 100k\Omega \text{ connected to Vs/2, and } V_{OUT} = Vs/2, \text{ unless otherwise specified.})$

PARAMETER	SYM	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS			•		•	
Input Offset Voltage	Vos	V _{CM} =Vs/2		0.8	5.6	mV
Input Bias Current	I _B			10		рА
Input Offset Current	I _{os}			10		рА
Common-Mode Voltage Range	V _{CM}	Vs=5.5V		-0.1 to		V
		V. 5 5V VOM 0 4V4 4V		+5.6		40
Common-Mode Rejection Ration	CMRR	Vs=5.5V, VCM=-0.1V to 4V		62		dB
<u> </u>		Vs=5.5V, VCM=-0.1V to 5.6V		60		dB
		$R_L=5k\Omega$, Vo=+0.1V to +4.9V		80		dB
Open-Loop Voltage Gain	A _{OL}	R _L =100KΩ, Vo=+0.035V to +4.965V		84		dB
Input Offset Voltage Drift	$\Delta V_{OS}/\Delta T$			2.7		uV/℃
OUTPUT CHARACTERISTICS	1		•	•		
	V _{OH}	RL=100kΩ		4.997		V
O to tWalter Q to the Bell	V _{OL}	RL=100kΩ		5		mV
Output Voltage Swing from Rail	V _{OH}	RL=100kΩ		4.992		V
	V _{OL}	RL=100kΩ		8		mV
0.10.10.0001	I _{SOURCE}	5 100 1 1/10		84		1
Output Current	I _{SINK}	$R_L=10\Omega$ to Vs/2		75		mA
POWER SUPPLY	1		ı		l.	II.
Operating Voltage Range	Vs		2.1		5.5	V
Power Supply Rejection Ration	PSRR	Vs=+2.5V to +5.5V, VCM=+0.5V		72		dB
Quiescent Current/Amplifier	IQ			60		uA
DYNAMIC PERFORMANCE(C _L =1						1
Gain-Bandwidth Product	GBP			1		MHz
Slew Rate	SR	G=+1, 2V Output Step		0.52		V/uS
Setting Time to 0.1%	ts	G=+1, 2V Output Step		5.3		us
Overload Recovery Time		V _{IN} GAIN=V _S		2.6		us
NOISE PERFORMANCE	1	ı	1	1		
						nV/
		f=1kHz		27		\sqrt{Hz}
oltage Noise Density	e _n					nV/
		f=10kHz		20		
						\sqrt{Hz}
	1					

APPLICATION NOTES

Driving Capacitive Loads

The BCT2358 can directly drive 250pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation. Applications that require greater capacitive driving capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1. The isolation resistor R_{ISO} and the load capacitor CL form a zero to increase stability. The bigger the R_{ISO} resistor value, the more stable V_{OUT} will be. Note that this method results in a loss of gain accuracy because R_{ISO} forms a voltage divider with R_{LOAD}.

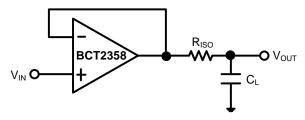


Figure 1. Indirectly Driving Heavy Capacitive Load
An improved circuit is shown in Figure 2. It

provides DC accuracy as well as AC stability. R_F provides the DC accuracy by connecting the inverting signal with the output. C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

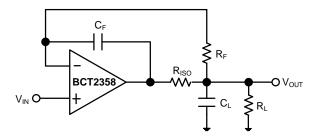


Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy

For non-buffer configuration, there are two other ways to increase the phase margin: (a) by increasing the amplifier's gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

Power-Supply Bypassing and Layout

The BCT2358 can operate from either a single +2.1V to +5.5V supply or dual $\pm 1.05V$ to $\pm 2.75V$ supplies. For single-supply operation, bypass the power supply +Vs with a 0.1uF ceramic capacitor which should be placed close to the +Vs pin. For dual supply operation, both the +Vs and the -Vs supplies should be bypassed to ground with separate 0.1uF ceramic capacitors. 2.2uF tantalum capacitor can be added for better performance.

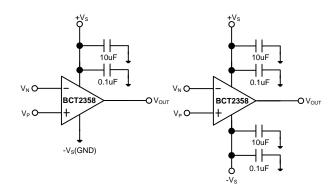


Figure 3. Amplifier with Bypass Capacitors

TYPICAL APPLICATION

CIRCUITS

Differential Amplifier

The circuit shown in Figure 4 performs the difference function. If the resistor ratios are equal to (R4/R3=R2/R1). Then

 $V_{OUT}=(V_P-V_N)*R2/R1+V_{REF}.$

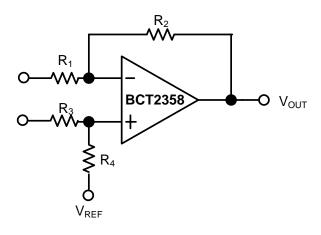


Figure 4. Differential Amplifier

Instrumentation Amplifier

The circuit in Figure 5 performs the same function as that in Figure 4 but with a high input impedance.

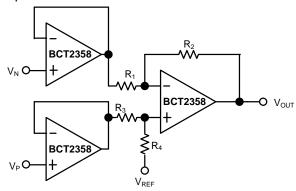


Figure 5. Instrumentation Amplifier

Low Pass Active Filter

The low pass filter shown in Figure 6 has a DC gain of (-R2/R1) and the -3dB corner frequency is $1/2\pi R_2C$. Make sure the filter bandwidth is within the bandwidth of the amplifier. The large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistor values as low as possible and consistent with output loading consideration.

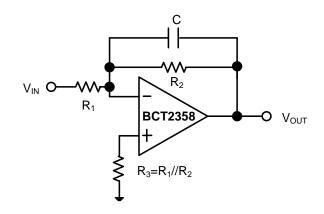
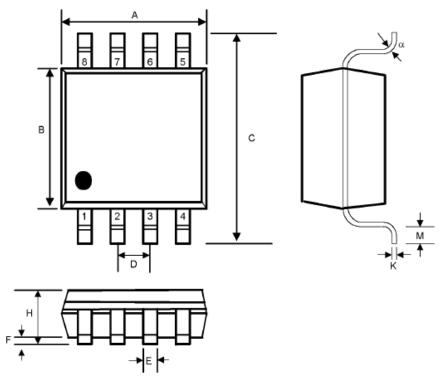



Figure 6. Low Pass Active Filter

PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions Ir	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	4.80	5.00	0.188	0.197	
В	3.80	4.00	0.149	0.158	
С	5.80	6.20	0.228	0.244	
D	1.27 BSC		0.050		
Е	0.33	0.51	0.013	0.020	
F	0.10	0.25	0.004	0.010	
Н	1.35	1.75	0.053	0.069	
K	0.19	0.25	0.007	0.010	
М	0.40	1.27	0.016	0.050	
α	00	80	00	80	

SOIC-8 Surface Mount Package