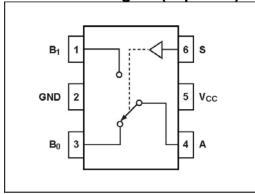


BCT4157

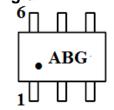
Low-Voltage, 2.5 Ω , 300MHz SPDT Analog Switch

General Description

The BCT4157 is a high-bandwidth, fast single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage range, 1.65V to 5.5V, the BCT4157 has a maximum ON resistance of 4.5-ohms at 2.7V, and 3.5-ohms at 4.5V.


Break-before-make switching prevents both switches being enabled simultaneously. This eliminates signal disruption during switching.

The control input, S, tolerates input drive signals up to 5.5V, independent of supply voltage. BCT4157 is an improved direct replacement for the FSA3157/NC7SB3157


Applications

Cell Phones
PDAs
Portable Instrumentation
Battery Powered Communications
Computer Peripherals

Connection Diagram(Top View)

Marking Digram

Features

- ◆CMOS Technology for Bus and Analog Applications
- ♦ Low ON Resistance: 2.5-ohms @ 4.5V
- ♦ Wide VCC Range: 1.65V to 5.5V
- ♦ Rail-to-Rail Signal Range
- ◆ Control Input Overvoltage Tolerance: 5.5V min.
- ♦ High Off Isolation: 57dB at 10MHz
- ♦ 54dB (10MHz) Crosstalk Rejection Reduces Signal Distortion
- ◆ Break-Before-Make Switching
- ♦ High Bandwidth: 300 MHz
- ♦ Extended Industrial Temperature Range: -40°C to 85°C
- ◆ Packaging (Pb-free & Green available):
 - 6-pin SC70
 - 6-pin TDFN 1.45X1

Pin Description

Pin Number	Name	Description
1	B1	Data Port
2	GND	Ground
3	В0	Data Port (Normally Closed)
4	А	Common Output/Data Port
5	Vcc	Positive Power Supply
6	S	Logic Control

Logic Function Table

Logic Input (S)	Function
0	B0 Connected to A
1	B1 Connected to A

ORDERING INFORMATION

Ordering Code	Package Description	Temp Range	Top Marking
BCT4157EXT	6-pin SC70	–40°C to +85°C	ABG
BCT4157ETT	6-pin TDFN 1.45X1	–40°C to +85°C	ABX

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

RECOMMENDED OPERATING CONDITIONS $^{(3)}$

VCC, S to GND	0.5V to +7V
All Other Pins to GND (2)	$0.3V \text{ to } (V_{CC} + 0.3V)$
DC VCC or Ground Current (ICC/IGND)±100mA
Continuous Current (B0,B1,A)	±400mA
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
Lead Temperature (Soldering, 10s)	260°C
Power Dissipation (PD) @ +85°C	180mW

Supply Voltage Operating (V _{CC})	1.65V to 5.5\
Control Input Voltage (S)	0V to VCC
Switch Voltage (B0,B1, A)	0V to VCC
Operating Temperature (TA)	40°C to +85°C
Thermal Resistance (θJA)	350°C/W

Note 1:Absolute Maximum Ratings may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Note 2:The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3:Control input must be held HIGH or LOW; it must not float.

DC ELECTRICAL CHARACTERISTICS (T_A = 25°C)

Parameter	Description	Test Conditions	Supply Voltage	Temp (°C)	Min.	Тур	Max.	Unit s
VIAR	Analog Input Signal Range		Vcc	T _A = 25°C & -40°C to 85°C	0		V _{CC}	V
Ron	ON Resistance ⁽⁴⁾	I _A = 100mA, Bo or B ₁ =1.5V	2.7V	T _A = 25°C		3	4.5	Ω
R _{ON}	ON Resistance ⁽⁴⁾	I _A = 100mA, Bo or B ₁ =3.5V	4.5V	T _A = 25°C		2.5	3.5	
ΔRοΝ	ON Resistance Match Between Channels ^(4,5)	I _{out} = 100mA, B ₀ =B ₁ =1.5V	2.7V	T _A = 25°C			0.15	Ω
R _{ONF}	ON Resistance ^(4,6) Flatness	I(A) = -100mA; B0 or B1= 0V, 1.5V, 1.5V	2.7V	T _A = 25°C			1.5	Ω
Ronf	ON Resistance ^(4,6) Flatness	I(A) = -100mA; B0 or B1= 0V, 1.5V, 3.0V,	4.5V	T _A = 25°C			0.5	Ω
Ion	ON State Leakage Current	S=0V or Vcc, A= 1V, 4.5V or floating; B0 or B1 = 1V,4.5V or floating	5.5V	T _A = 25°C	-20		20	nA
loff	ON State Leakage Current	S= 0V or Vcc, A = 1V, 4.5V or floating; B0 or B1 = 4.5V, 1V or floating	5.5V	T _A = 25°C	-20		20	nA
VIH	Input High	Logic High Level	V _{CC} = 1.65V to 1.95V	T _A = 25°C &	0.75 V _{CC}			V
VIII	Voltage (S)	Logio i ligii Level	V _{CC} = 2.3V to 5.5V	–40°C to 85°C	0.7 V _{CC}			V
VIL	Input Low	Logic Low Level	V _{CC} = 1.65V to 1.95V				0.25 Vcc	V
VIL.	Voltage (S)	Logic Low Level	V _{CC} = 2.3V to 5.5V				0.25 Vcc	V

DC ELECTRICAL CHARACTERISTICS (TA = -40°C to +85°C)

lın	Input Leakage Current (S)	0 ≤V _{IN} ≤5.5V	V _{CC} = 0V to 5.5V	$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to 85°C		±0.1 ±1.0	
Luca	Quiescent	All channels ON or OFF, V _{IN} = V _{CC} or	V _{CC} =	T _A = 25°C		1	uA
Ivcc	Supply Current	GND, I _{OUT} = 0	5.5V	T _A = -40°C to 85°C		10	

Note 4: Measured by voltage drop between A and B0 or B1 pins at the indicated current through the device. ON resistance is determined by the lower of the voltages on two ports (A or B)

Note 5: $\Delta R_{ON} = R_{ON} \max - R_{ON} \min$. measured at identical V_{CC} , temperature and voltage levels. Note 6: Flatness is defined as difference between maximum and minimum value of ON resistance over the specified range of conditions..

CAPACITANCE

Parameter	Description	Test Conditions	Supply Voltage	Temp (°C)	Min.	Тур	Max.	Units
C _{IN}	Control Input					2.3		
C _{IO-B}	For Bn Port,Switch OFF	f= 1 MHz ⁽⁷⁾ See test	V _{CC} = 5.0V	T _A = 25°C		6.5		pF
C _{IOA-ON}	For A Port, Switch ON	circuit diagrams 7 and 8				18.5		

SWITCH AND AC CHARACTERISTICS

011111011	7171D 710 01	IANACILNISTICS						
Parameter	Description	Test Conditions	Supply Voltage	Temp (°C)	Min.	Тур	Max.	Units
	Dranagation	See test circuit	V _{CC} = 2.3V to 2.7V			1.2		
t _{PLH} t _{PHL}	Propagation Delay: A to Bn	diagrams 1 and 2. V _I Open (8)	V _{CC} = 3.0V to 3.6V	T _A = 25°C & -40 to 85°C		0.8		
	ы	Open (e)	V _{CC} = 4.5V to 5.5V			0.3		
			V _{CC} = 1.65V to 1.95V			23		
tpzl	t _{PZL} Enable Turn test circuit	V _{CC} = 2.3V to 2.7V	T _A = 25°C		13			
tpzh	ON Time: A to Bn	~	V _{CC} = 3.0V to 3.6V			6.9		ns
			V _{CC} = 4.5V to 5.5V			5.2		
	OUTPUT		V _{CC} = 2.5V			24		
t _{PZL}	ENABLE TURN	See test circuit diagrams 1 and 2.	V _{CC} = 3.3V	T _A = 25°C &		14		
t _{PZH}	NOTIME:	$V_I = 2V_{CC}$ for T_{PZL} , $V_I = 0V$ for t_{PZH}	V _{CC} = 3.0V to 3.6V	–40 to 85°C		7.6		
	A TO BN		V _{CC} = 4.5V to 5.5V			5.7		

	Output		V _{CC} = 1.65V to 1.95V			12.5		
tplz	Disable Turn	See test circuit diagrams 1 and 2.	V _{CC} = 2.3V to 2.7V	T _A = 25°C		7		
t _{PHZ}	OFF Time: A to Bn	$V_I = 2V_{CC}$ for T_{PZL} , $V_I = 0V$ for t_{PZH}	V _{CC} = 3.0V to 3.6V			5		
	A to bii		V _{CC} = 4.5V to 5.5V			3.5		
	Output Disable Turn TPHZ OFF Time: A to Bn		V _{CC} = 2.5V			13		
tplz		See test circuit diagrams 1 and 2.	V _{CC} = 3.3V	$T_A = -40 \text{ to}$		7.5		ne
tpHZ		$V_I = 2V_{CC}$ for T_{PZL} , $V_I = 0V$ for t_{PZH}	V _{CC} = 3.0V to 3.6V	85°C		5.3		ns
		1 2 3 3 4 211	V _{CC} = 4.5V to 5.5V			3.8		
		re See test circuit diagram 3 (9)	V _{CC} = 2.5V	T _A = 25°C & -40 to 85°C	0.5			
_	Break		V _{CC} = 3.3V		0.5			
цвм	t _{BM} Before dia		V _{CC} = 3.0V to 3.6V		0.5			
			VCC = 4.5V to 5.5V		0.5			
Q	Charge	C _L = 0.1nF, V _{GEN} =	V _{CC} = 5.0V	T _A = 25°C		7		~C
Q Q	Injection	$0V$, $R_{GEN} = 0Ω$. See test circuit 4.	VCC = 3.3V	1 1A - 25 C		3		pC
OIRR	Off Isolation	$R_L = 50\Omega$, $V_{GEN} = 0V$, $R_{GEN} = 0\Omega$. See test circuit 5. (10)	V _{CC} = 1.65V to 5.5V	T _A = 25°C		– 57		dB
X _{TALK}	Crosstalk Isolation	See test circuit 6.	V _{CC} = 1.65V to 5.5V	T _A = 25°C		-54		
f _{3dB}	–3dB Bandwidth	See test circuit 9	V _{CC} = 1.65V to 5.5V	T _A = 25°C		300		MHz

Note 7: .TA = 25°C, f = 1MHz. Capacitance is characterized but not tested in production.

Note 8: Guaranteed by design but not production tested. The device contributes no other propagation delay other than the RC delay of the switch ON resistance and the 50pF load capacitance, when driven by an ideal voltage source with zero output impedance.

Note 9: Guaranteed by design.

Note 10: Off Isolation = 20 Log10 [V_A / V_{Bn}] and is measured in dB.

TEST CIRCUITS AND TIMING DIAGRAMS

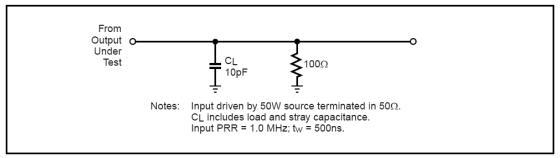


Figure 1. AC Test Circuit

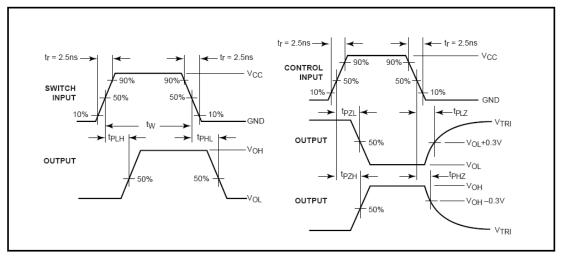


Figure 2. AC Waveforms

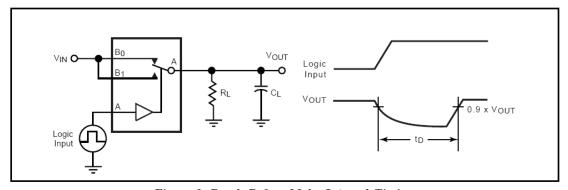


Figure 3. Break Before Make Interval Timing

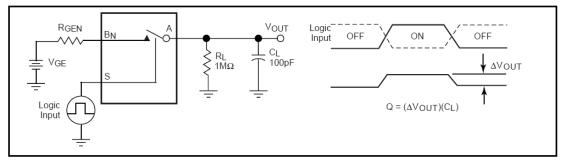
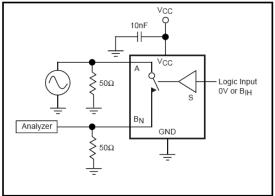



Figure 4. Charge Injection Test

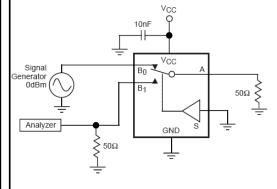
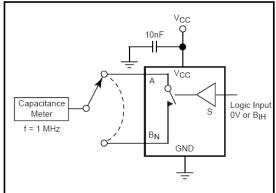



Figure 5. Off Isolation

Figure 6. Crosstalk

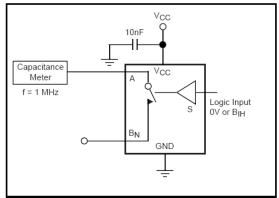
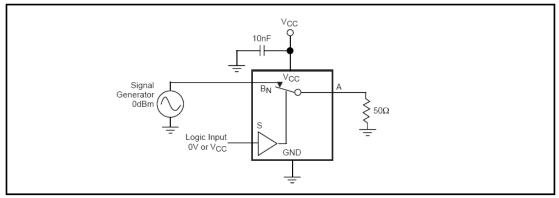
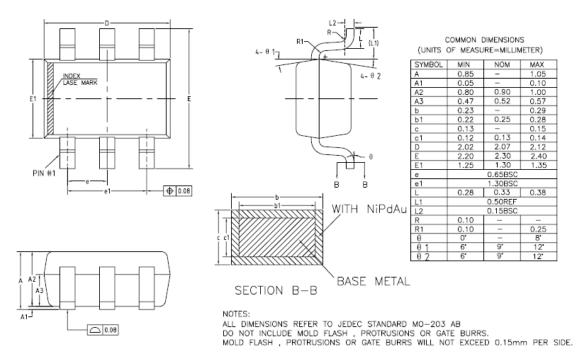
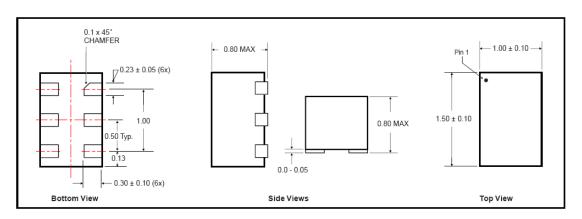


Figure 8. Channel On Capacitance


Figure 9. Bandwidth

Packaging Mechanical: 6-Pin SC70 (C)

Packaging Mechanical: 6-Pin TDFN

