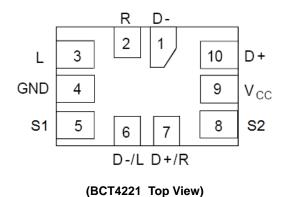


BCT4221

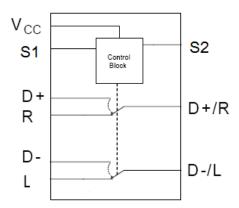
High-Speed & Low-Ron DPDT Analog Switch

General Description

The BCT4221 double-pole double-throw (DPDT) analog switch multiplexes Hi-speed (480MHz) USB and audio analog signals. One Channel has wide bandwidth and low bit-to-bit skew allow it to pass high-speed differential signals with good signal integrity. Another channel has ultra Low on resistance (1.0 Ω) . Each switch is bidirectional and offers little or no attenuation of the signals at the outputs. Industry-leading advantages include a propagation delay of less than 250ps, resulting from its low channel resistance and low I/O capacitance. Their high channel-to-channel crosstalk rejection results in minimal noise interference.


Features

- ♦ VCC Operating Range: 1.65V to 5.0V
- ♦ Low ON Resistance: 1.0-ohms at 5.0V (Audio Mode)
- ♦ Rail-to-Rail Signal Range
- ♦ ON-Resistance Matching: 0.2 Ω (Audio Mode)
- ♦ ON-Resistance Flatness: 0.1Ω (Audio Mode)
- ♦ High Off Isolation: 57dB at 10MHz
- ♦ 54dB (10MHz) Crosstalk Rejection
- ◆ Break-Before-Make Switching
- ◆ -3dB Bandwidth: 700MHz (USB Mode),
- ♦ Replace for FSA221
- ◆ Space-Saving, 10-Pin QFN 1.4mmX1.8mm


Applications

- Cell Phones
- Digital Still Cameras
- PDAs and Palmtop Devices
- MP3/MP4 Players

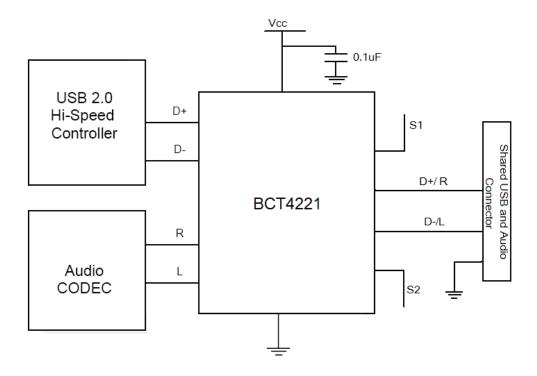
Pin Configurations

Logic Diagram

Audio Mode: D+/R = R, D-/L = LUSB Mode: D+/R = D+, D-/L = D-

BCT4221 High-Speed & Low-Ron DPDT Analog Switch Ordering Information

Ordering Code	Package Description	Temp Range	Top Marking		
BCT4221ETB-TR	10-pin WQFN 1.4X1.8	–40 ℃ to +85 ℃	AOX		


Pin Definitions

Pin	Name	Description		
9	Vcc	Power Supply		
5	S1	Logic Control Input		
8	S2	Logic Control Input		
10,1	D+, D-	USB data bus input sources.		
2, 3	R, L	Audio right and left input sources.		
7, 6	D+/R, D-/L	USB and audio common connector ports.		

Truth Table

S1	S2	Audio Mode	USB Mode	Remarks
0	0	OFF	ON	USB Communication
0	1	OFF	ON	USB Communication
1	0	OFF	ON	USB Communication
1	1	ON	OFF	Audio On

Typical Application Circuit

BCT4221 High-Speed & Low-Ron DPDT Analog Switch Absolute Maximum Ratings

VCC, S1 , S2 to GND.....-0.65V to +5.25V All Other Pins to GND (Note 1).....-0.65V to (VCC + 0.3V) Continuous Current (D+/-,R/L, D+/R,D-/L).....±400mA Peak Current (D+/-,R/L, D+/R,D-/L)... (pulsed at 1ms, 10% duty cycle)....±500mA

 $\label{eq:continuous} \begin{array}{lll} \text{Continuous Power Dissipation (TA = +70^{\circ}\text{C})} \\ \text{10-Pin TQFN (derate 15.6mW/}^{\circ}\text{C above +70^{\circ}\text{C})} & \dots & 1.25\text{W} \\ \text{Operating Temperature Range} & \dots & -40^{\circ}\text{C to +85^{\circ}\text{C}} \\ \text{Storage Temperature Range} & \dots & -65^{\circ}\text{C to +150^{\circ}\text{C}} \\ \text{Junction Temperature} & \dots & +150^{\circ}\text{C} \\ \text{Lead Temperature (soldering, 10s)} & \dots & +300^{\circ}\text{C} \\ \end{array}$

Note 1: Signals on D+/-,R/L, D+/R,D-/L exceeding VCC or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

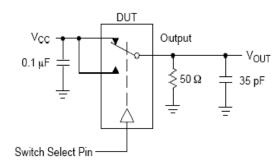
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
POWER SUPPLY							
Supply Voltage Range	VCC			1.6		5.0	V
Supply Current	ICC	$VCC = 3.6V$, $S_{-} = 0$ or VCC , I $D+/R$, $D-/L =$ floating		0.02	1	uA	
High Speed Mod	e(USB2.0)			•			
Analog Signal Range		D+,D-, D+/R,D-/L		-0.6		VCC	V
On-Resistance	RON	$I_{D-L}=8mA$, V_{D+} , $V_{D-}=0$ to VCC (Note 3)			8.5	12	Ω
On-Resistance Match	ΔRON	$I_{D+/R}= 8mA \text{ or } I_{D-/L}=8mA, V_{D+}, V_{D-}=1.2v \text{ (Note 3,4)}$			2.2		Ω
On-Resistance Flatness	RFLAT	$I_{D+/R}=8mA$ or $I_{D-/L}=8mA$, V_{D+} , $V_{D-}=0.6,1.8v$ (Note 5)			1.5		Ω
D+,D-,R,L,Off-Leaka ge Current	IOFF	$V_{D+/R}, V_{D-/L}, V_{D+}, V_{D-} = 0.6, 1.8v, or floating (Note 5)$			50	100	nA
D+/R,D-/L On-Leakage Current	ION	$V_{D+/R}, V_{D-/L}, V_{D+}, V_{D-} = floating$ (Note 5)			50	100	nA
Low Ron Mode(Audio):						
Analog Signal Range		R,L, D+/R,D-/L		-0.6		VCC	V
On-Resistance	RON	$I_{D-/L}$ =8mA, V_{R} , V_{L} , = 0 to VCC			1.0	1.5	Ω
On-Resistance Match	ΔRON	$I_{D+/R}$ = 8mA or $I_{D-/L}$ =8mA, V_R , V_L , = 1.2v (Note 3,4)			0.2		Ω
On-Resistance Flatness	RFLAT	$I_{D+/R}$ = 8mA or $I_{D-/L}$ =8mA, V_R , V_L , = 0.6,1.8v (Note 5)			0.1		Ω
D+,D-,R,L,Off-Leaka ge Current	IOFF	$V_{D+/R}, V_{D-/L}, V_R, V_{L} = 0.6, 1.8v, or floating (Note 5)$			50	100	nA
D+/R,D-/L On-Leakage Current	ION	$V_{D+/R}, V_{D-/L}, V_{R}, V_{L}$ = floating (Note 5)			50	100	nA

Electrical Characteristics (continued)
(VCC = 2.7V to 4.2V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VCC = 3.3V, TA = +25°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
DYNAMIC CHARACTERISTICS							
Turn-On Time	Ton	V_{D^+} , V_{D^-} , V_R or V_L = 1.5V, RL = 50 Ω , CL = 35pF, Figure 2		20	50	ns	
Turn-Off Time	Toff	V_{D^+} , V_{D^-} , V_R or V_L = 1.5V, RL = 50 Ω , CL = 35pF, Figure 2		15	50	ns	
Break-Before-Make Time	Тввм	V_{D+} , V_{D-} , V_R or $V_L = 1.5V$, $RL = 50\Omega$, $CL = 35pF$, Figure 1	2	15		ns	
On-Channel Bandwidth -3dB	BW	RL = 50Ω , D+.D- to D+/R, D-/L, Figure 4		700		MHz	
On-Channel Bandwidth -3dB	BW	RL = 50Ω , R, L to D _{+/R} , D _{-/L} , Figure 4		40		MHz	
Off-Isolation	VISO	$D_{+/R}$, $D_{-/L}$ = 1VRMS, RL = 50Ω , f = 100kHz, CL = 5pF, Figure 4 (Note 7)		-66		dB	
Crosstalk	VCT	$D_{+/R}$, $D_{-/L}$, $RL = 50\Omega$, $f = 100kHz$, $CL = 5pF$, Figure 6		-86		dB	
Total Harmonic Distortion Plus Noise (Audio)	THD+N			0.02		%	
D+,D- Off-Capacitance	C _{D+} (OFF), C _{D-} (OFF)	f = 1MHz, V _{D+} = V _{D-} = 1.5V, Figure 5		5		pF	
D+/R,D-/L On-Capacitance	CD+/R(OFF), CD-/L(OFF)	$f = 1MHz$, $V_{D+/R} = V_{D-/L} = 1.5V$, Figure 5		7		pF	
DIGITAL INPUTS							
Input-Logic High	Vih	VCC=2.7V to 3.3V,	1.5			V	
Input-Logic Low	VIL	VCC=2.7V to 3.3V,			0.5	V	
Input-Logic High	Vih	VCC=3.3 to 4.2V,	1.7			V	
Input-Logic Low	VIL	VCC=3.3 to 4.2V,			8.0	V	
Input Leakage Current	lin	$VIN_{-} = 0 \text{ or VCC}$,			±1	uA	


Note 2: Devices are 100% tested at TA = +25°C. Limits across the full temperature range are guaranteed by design and correlation.

Note 3: RON and RON matching specifications are guaranteed by design, Note 4: \triangle RON = RON(MAX) - RON(MIN).

Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance, as measured over the specified analog signal ranges.

Note 6: Guaranteed by design, not production tested. Note 7: Between any two switches.

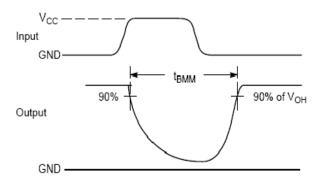
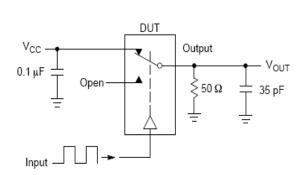



Figure 1. tbbm (Time Break-Before-Make)

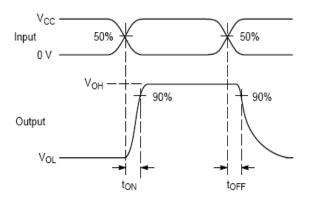


Figure 2. ton/off

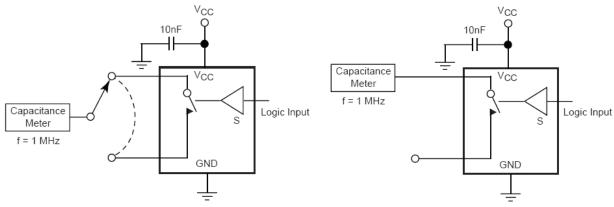


Figure 3. Channel ON/OFF Capacitance

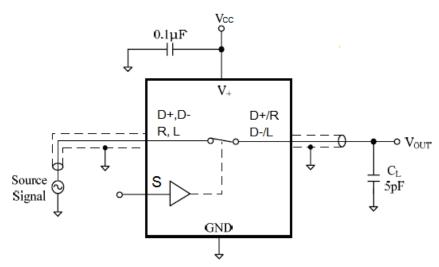


Figure 4. Bandwidth -3dB

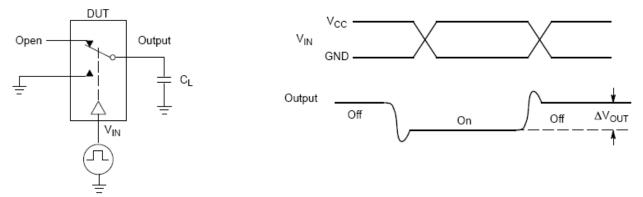


Figure 5. Charge Injecting (Q)

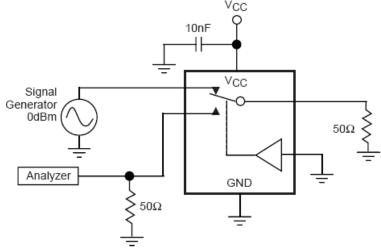
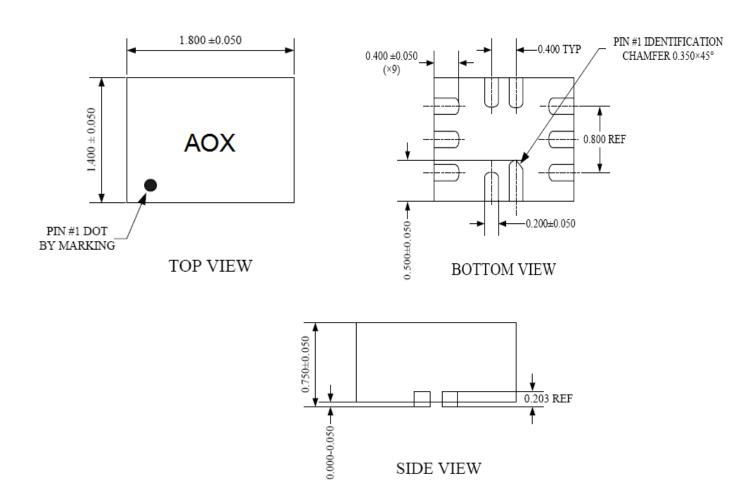



Figure 6. Crosstalk

Package Information

Note: All linear dimensions are in millimeters.