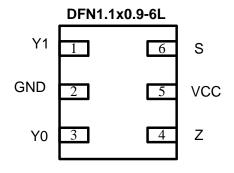


BCT4257

Low-Voltage, 2.8Ω SPDT Analog Switch

General Description

The BCT4257 is a high-bandwidth, fast single pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage range, 1.65V to 5.5V, the BCT4257 has a maximum ON resistance of 5.1-ohms at 1.65V, 3.9-ohms at 2.3V & 2.85-ohms at 4.5V.


Break-before-make switching prevents both switches being enabled simultaneously. This eliminates signal disruption during switching.

The control input, S, tolerates input drive signals up to 5.5V, independent of supply voltage.

Applications

Cell Phones PDAs Portable Instrumentation Battery Powered Communications Computer Peripherals

Connection Diagram(Top View)

Features

- ◆CMOS Technology for Bus and Analog Applications
- ♦ Low ON Resistance: 3-ohms @ 2.7V
- ♦ Wide VCC Range: 1.65V to 5.5V
- ♦ Rail-to-Rail Signal Range
- ◆ Control Input Overvoltage Tolerance: 5.5V min.
- ♦ High Off Isolation: 57dB at 10MHz
- ◆ 54dB (10MHz) Crosstalk Rejection Reduces Signal Distortion
- ◆ Break-Before-Make Switching
- ♦ High Bandwidth: 300 MHz
- ◆ Extended Industrial Temperature Range: -40°C to 85°C
- ◆ Packaging: DFN1.1x0.9-6L (Pb-free & Green available)

Pin Description

Name	Description
Y1	Independent input or output
GND	Ground
Y0	Independent input or output
Z	Common output or input
VCC	Supply voltage
S	Select input

Logic Function Table

Logic Input (S)	Function
0	Y0 Connected to Z
1	Y1 Connected to Z

ORDERING INFORMATION

Ordering Code	Ordering Code Package Description		Top Marking
BCT4257ELT-TR	DFN1.1x0.9-6L	–40°C to +85°C	AAB

RECOMMENDED OPERATING CONDITIONS (3)

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Note 1:Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Note 2:The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3:Control input must be held HIGH or LOW; it must not float.

DC ELECTRICAL CHARACTERISTICS (TA = - 40°C to +85°C)

Parameter	Description	Test Conditions	Supply Voltage	Temp (°C)	Min.	Тур	Max.	Units
VIAR	Analog Input Signal Range		VCC	TA = 25°C & -40°C to 85°C	0		Vcc	V
RON	ON Resistance ⁽⁴⁾	lout = 100mA, Y0 or Y1=1.5V	2.7V	T _A = 25°C		3	6	Ω
RON	ON Resistance ⁽⁴⁾	lout = 100mA, Y0 or Y1=3.5V	4.5V	T _A = 25°C			3	Ω
	ON Resistance Match	1. 100 1	2.7V				0.75	
ΔRON	Between Channels(4,5,6)	lout = 100mA, Y0=Y1=1.5V	4.5V	TA = 25°C			0.25	Ω
RONF	ON Resistance(4,5 ,7) Flatness	I(Z) = -100mA; Y0 or Y1= 0.75V, 2V	2.7V	TA = 25°C			0.5	Ω
RONF	ON Resistance(4,5 ,7) Flatness	I(Z) = -100mA; Y0 or Y1=1.5V, 3.0V,	4.5V	TA = 25°C			0.1	Ω
VIH	Input High	Logic High Level	VCC = 1.65V to 1.95V	TA = 25°C &	1.5			V
VIII	Voltage	Logic Flight Level	VCC = 2.3V to 5.5V	–40°C to 85°C	1.7			V
VIL	Input Low	Logic Low Love	VCC = 1.65V to 1.95V				0.5	V
VIL	Voltage	Logic Low Level	VCC = 2.3V to 5.5V				0.8	V

DC ELECTRICAL CHARACTERISTICS (TA = - 40°C to +85°C)

lin	Input Leakage	0 ≤V _{IN} ≤5.5V	Vcc = 0V	T _A = 25°C		±0.1	
	Current		to 5.5V	$T_A = -40^{\circ}C$ to 85°C		±1.0	
l _{OFF}	OFF State Leakage Current	Z=1V,4.5V, Y0 or Y1=4.5V, 1V	V _{CC} = 5.5V	T _A = 25°C	-2.0	2.0	μΑ
laa	Quiescent	All channels ON or OFF, V _{IN} = V _{CC} or	V _{CC} =	T _A = 25°C		1	
Icc	Supply Current	GND, I _{OUT} = 0	5.5V	T _A = -40°C to 85°C		10	

Note 4: Measured by voltage drop between Y0/Y1 and Z pins at the indicated current through the device. ON resistance is determined by the lower of the voltages on two ports (Y0 or Y1)

- Note 5: Parameter is characterized but not tested in production.
- Note 6: $\Delta R_{ON} = R_{ON} \text{ max} R_{ON} \text{ min.}$ measured at identical V_{CC} , temperature and voltage levels.
- Note 7: Flatness is defined as difference between maximum and minimum value of ON resistance over the specified range of conditions..
- Note 8: Guaranteed by design.

CAPACITANCE(12)

Parameter	Description	Test Conditions	Supply Voltage	Temp (°C)	Min.	Тур	Max.	Units
C _{IN}	Control Input					2.3		
C _{IO-Y1}	For Y1 Port,Switch OFF	f= 1 MHz ⁽¹²⁾	V _{CC} = 5.0V	T _A = 25°C		6.5		pF
C _{IOA-ON}	For Y0 Port, Switch ON	T= 1 MHZ(12)				18.5		

SWITCH AND AC CHARACTERISTICS

Parameter	Description	Test Conditions	Supply Voltage	Temp (°C)	Min.	Тур	Max.	Units
	Dropogation	See test circuit	V _{CC} = 2.3V to 2.7V			1.2		
t _{PLH} t _{PHL}	Propagation Delay: Z to Yn	diagrams 1 and 2. V _I Open (10)	V _{CC} = 3.0V to 3.6V	T _A = 25°C & -40 to 85°C		0.8		
	111	Open (10)	V _{CC} = 4.5V to 5.5V			0.3		
		V _{CC} = 1.65V to 1.95V			7		23	
tpzL	Output Enable Turn	: V _I = 2V _{CC} for T _{PZL} ,	V _{CC} = 2.3V to 2.7V	T _A = 25°C	3.5		13	
t _{PZH}	t _{PZH} ON Time: Z to Yn		V _{CC} = 3.0V to 3.6V		2.5		6.9	ns
			V _{CC} = 4.5V to 5.5V		1.7		5.2	
			V _{CC} = 2.5V				24	
t _{PZL} Ena	Output Enable Turn	See test circuit diagrams 1 and 2. V _I = 2V _{CC} for T _{PZL} , V _I = 0V for t _{PZH}	Vcc = 3.3V	T _A = 25°C & -40 to 85°C			14	
	ON TIME: Z TO Yn		V _{CC} = 3.0V to 3.6V				7.6	
			Vcc = 4.5V to 5.5V				5.7	

	Output	_	V _{CC} = 1.65V to 1.95V		3		12.5	
tpLZ	Disable	Disable diagrams 1 and 2.	V _{CC} = 2.3V to 2.7V	T _A = 25°C	2		7	
t _{PHZ}	OFF Time:	$V_I = 2V_{CC}$ for T_{PZL} , $V_I = 0V$ for t_{PZH}	$V_{CC} = 3.0V \text{ to } 3.6V$		1.5		5	
	2 10 111		V _{CC} = 4.5V to 5.5V		0.8		3.5	
	Output		V _{CC} = 2.5V				13	
tplz	Disable Turn	See test circuit diagrams 1 and 2.	V _{CC} = 3.3V	$T_A = -40 \text{ to}$			7.5	ne
t _{PHZ}	OFF Time:	$V_I = 2V_{CC}$ for T_{PZL} , $V_I = 0V$ for t_{PZH}	V _{CC} = 3.0V to 3.6V	85°C			5.3	ns ns
	Z to Yn		V _{CC} = 4.5V to 5.5V				3.8	
		Break Before Make Time See test circuit diagram 9. ⁽⁹⁾	V _{CC} = 2.5V	T _A = 25°C & -40 to 85°C	0.5			
tou	t _{BM} Before		V _{CC} = 3.3V		0.5			
rBM			V _{CC} = 3.0V to 3.6V		0.5			
			VCC = 4.5V to 5.5V		0.5			
Q	Charge	$C_L = 0.1 \text{nF}, V_{GEN} = 0 \text{V}, R_{GEN} = 0 \Omega$. See	Vcc = 5.0V	T _A = 25°C		7		рС
Q	Injection	test circuit 4.	VCC = 3.3V	1A = 23 C		3		рС
OIRR	Off Isolation	$R_L = 50\Omega$, $V_{GEN} = 0V$, $R_{GEN} = 0\Omega$. See test circuit 5. (11)	V _{CC} = 1.65V to 5.5V	T _A = 25°C		<i>–</i> 57		dB
X _{TALK}	Crosstalk Isolation	See test circuit 6.	V _{CC} = 1.65V to 5.5V	T _A = 25°C		-54		
f _{3dB}	–3dB Bandwidth	See test circuit 9	V _{CC} = 1.65V to 5.5V	T _A = 25°C		300		MHz

Note 9: Guaranteed by design

Note 10: Guaranteed by design but not production tested. The device contributes no other propagation delay other than the RC delay of the switch ON resistance and the 50pF load capacitance, when driven by an ideal voltage source with zero output impedance.

Note 11: Off Isolation = 20 Log10 [V_Z/V_{Yn}] and is measured in dB.

Note 12: $TA = 25^{\circ}C$, f = 1MHz. Capacitance is characterized but not tested in production.

TEST CIRCUITS AND TIMING DIAGRAMS

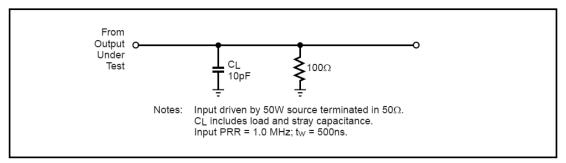


Figure 1. AC Test Circuit

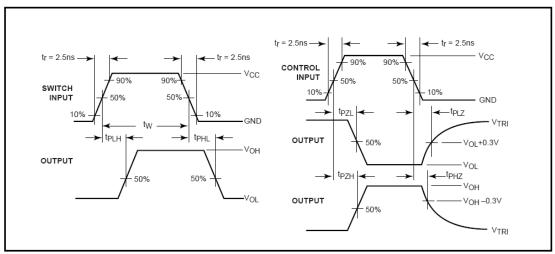


Figure 2. AC Waveforms

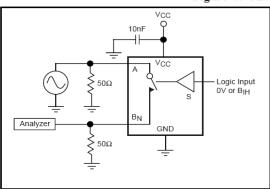


Figure 3. Break Before Make Interval Timing

Figure 4. Charge Injection Test

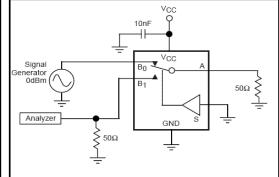


Figure 5. Off Isolation

Capacitance Meter

f = 1 MHz

A

VCC

A

VCC

BN

GND

GND

GND

Figure 6. Crosstalk

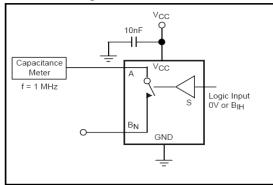


Figure 7. Channel Off Capacitance

Figure 8. Channel On Capacitance

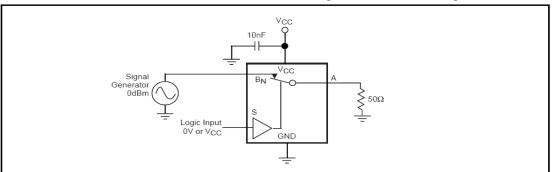
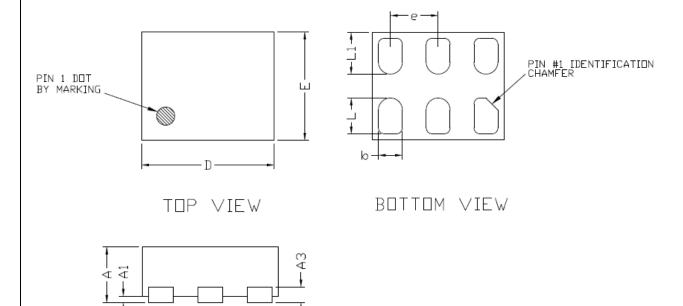
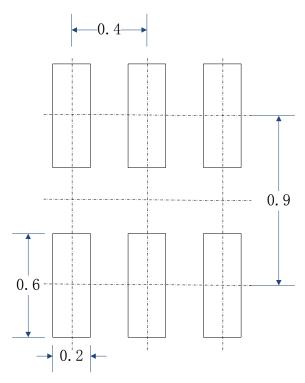



Figure 9. Bandwidth

DFN1.1x0.9-6L PACKAGE OUTLINE DIMENSIONS

SIDE VIEW



Symbol	Dimensions In Millimeters(mm)					
Symbol	Min	NOM	Max			
А	0.4		0.5			
A1	0		0.05			
А3		0.125 REF				
D	1.05	1.10	1.15			
E	0.85	0.90	0.95			
b	0.15	0.20	0.25			
L	0.25	0.30	0.35			
L1	0.30	0.35	0.40			
е	0.40 BSC					

$\begin{array}{c} \text{BCT4257} \\ \text{Low-Voltage,2.8} \ \Omega \\ \text{SPDT Analog Switch} \end{array}$

PCB Layout Pattern: DFN1.1x0.9-6L

RECOMMENDED PCB LAYOUT PATTERN (Unit: mm)