

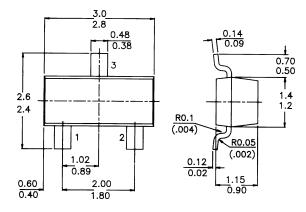
SOT-23 Formed SMD Package

BCW65A, BCW65B BCW65C

GENERAL PURPOSE TRANSISTOR

N-P-N transistor

Marking


An ISO/TS 16949, ISO 9001 and ISO 14001 Certified Company

BCW65A = EA

BCW65B = EB

BCW65C = EC

PACKAGE OUTLINE DETAILS
ALL DIMENSIONS IN mm

Pin configuration

1 = BASE

2 = EMITTER

3 = COLLECTOR

ABSOLUTE MAXIMUM RATINGS		BCW65A		65B	65C	
Collector-base voltage (open emitter)	$-V_{CBO}$	max.	60	60	60	V
Collector-emitter voltage (open base)	$-V_{CEO}$	max.	32	<i>32</i>	32	V
Emitter-base voltage (open collector)	$-V_{EBO}$	max.	5	5	5	V
Collector current (d.c.)	$-I_C$	max.	800	<i>800</i>	800	mA
Total power dissipation at $T_{amb} = 25^{\circ}C$	P_{tot}	max	225	225	225	mW
D.C. current gain						
$-I_C = 100 \text{ mA; } -V_{CE} = 10 \text{ V}$	h_{FE}	min.	35	<i>50</i>	<i>80</i>	
$I_C = 10 \text{ mA; } V_{CE} = 1 \text{ V}$		min. max.	75 220	110	180	
$I_C = 100 \text{ mA; } V_{CE} = 1 \text{ V}$		min. max.	100 250	160 400	250 630	
$I_C = 500 \text{ mA}; \ V_{CE} = 2 \ V$		min.	35	60	100	

BCW65A, BCW65B BCW65C

RATINGS (at $T_A = 25^{\circ}C$ unless otherwise specified)										
Limiting values										
Collector-base voltage (open emitter)	$-V_{CBO}$	max.	<i>60</i>	60	60	V				
Collector-emitter voltage (open base)	$-V_{CEO}$	max.	32	32	32	V				
Emitter-base voltage (open collector)	$-V_{EBO}$	max.	5	5	5	V				
Collector current (d.c.)	$-I_C$	max.	800	800	800	mA				
Total power dissipation at $T_{amb} = 25^{\circ}C$	P_{tot}	max	225	225	225	mW				
Storage temperature	T _{stg} -55 to +150			50	° C					
THERMAL CHARACTERISTICS										
$T_j = P (R_{th j-t} + R_{th s-a}) + T_{amb}$										
Thermal resistance										
from junction to ambient	$R_{th\ j-a}$	<i>556</i>	556	556		°C/mW				
CHARACTERISTICS (at $T_A = 25^{\circ}C$ unless otherwise specified)										
Collector-emitter breakdown voltage										
$-I_C = 10 \text{ mA}; I_B = 0$	$-V_{(BR)CE}$	Omin.	32	32	32	V				
Collector-base breakdown voltage										
$-I_C = 10$ mA; $V_{EB} = 0$	$-V_{(BR)CES}$	ς min.	<i>60</i>	60	<i>60</i>	V				
Emitter-base breakdown voltage										
$-I_E = 10 \text{ mA}; I_C = 0$	$-V_{(BR)EBO}$	o min.	5	5	5	V				
Collector cut-off current										
$-V_{CE} = 32 \ V; \ I_{E} = 0$	-I _{CES}	max.	20	20	20	nA				
Emitter cut-off current										
$V_{EB} = 4 V; I_C = 0$	I_{EBO}	max.	20	20	20	nA				
Output capacitance at $f = 1$ MHz										
$I_E = 0; -V_{CB} = 10 V$	C_c	max.	12	12	12	pF				
Input capacitance at $f = 100 \text{ kHz}$										
$I_C = 0; -V_{EB} = 0.5 V$	C_e	max.	80	80	80	pF				
Saturation voltages										
$-I_C = 500 \text{ mA}; -I_B = 50 \text{ mA}$	$-V_{CEsat}$	max.	0.7	0.7	0.7	V				
$-I_C = 100 \text{ mA}; -I_B = 10 \text{ mA}$	-V _{CEsat}	typ.	0.3	0.3	0.3	V				
$-I_C = 500 \text{ mA}; -I_B = 50 \text{ mA}$	$-V_{BEsat}$	max.	2	2	2	V				
Noise figure at $R_S = 1 \text{ kW}$										
$-I_C = 0.2 \text{ mA; } -V_{CE} = 5 \text{ V}$										
f = 1 KHz, BW = 200 Hz	NF	max.	10	10	10	dB				
Current Gain-Band width Product										
$I_C = 20 \text{ mA}, \ V_{CE} = 10V, \ f = 100 \text{ MHz}$	f_T	min	100	100	100	MHz				

Notes

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished on the CDIL Web Site/CD is believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of Continental Device India Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.

Telephone + 91-11-579 6150 Fax + 91-11-579 9569, 579 5290
e-mail sales@cdil.com www.cdil.com