### MAXIMUM RATINGS

| Rating                                                                       | Symbol           | BCX<br>26  | BCX<br>28   | BCX<br>30     | Unit        |  |
|------------------------------------------------------------------------------|------------------|------------|-------------|---------------|-------------|--|
| Collector-Emitter Voltage                                                    | VCEO             | 60         | 80          | 100           | Vdc         |  |
| Collector-Base Voltage                                                       | Vсво             | 60         | 80          | 100           | Vdc         |  |
| Emitter-Base Voltage                                                         | VEBO             | 5.0        |             |               | Vdc         |  |
| Collector Current – Continuous                                               | IC.              | 200        |             |               | mAdc        |  |
| Total Device Dissipation @ TA ≈ 25°C<br>Derate above 25°C                    | PD               | 350<br>2.8 |             |               | mW<br>mW/°C |  |
| Total Device Dissipation @ $T_C = 25^{\circ}C$<br>Derate above $25^{\circ}C$ | PD               | 1.0<br>8.0 |             | Watt<br>mW/°C |             |  |
| Operating and Storage Junction<br>Temperature Range                          | TJ, Tstg         | - 5        | -55 to +150 |               | °C          |  |
| THERMAL CHARACTERISTICS                                                      |                  |            |             |               |             |  |
| Characteristic                                                               | Symbol           |            | Ma>         | (             | Unit        |  |
| Thermal Resistance, Junction to Case                                         | R <sub>HJC</sub> |            | 125         |               | °C/W        |  |
|                                                                              |                  |            | 0.5.7       | 00.044        |             |  |



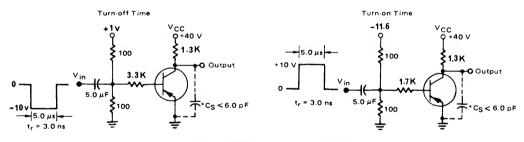
PNP SILICON

| Characteristic                          | Symbol           | Max | Unit |
|-----------------------------------------|------------------|-----|------|
| Thermal Resistance, Junction to Case    | R <sub>HJC</sub> | 125 | °C/W |
| Thermal Resistance, Junction to Ambient | BH IC            | 357 | °C/W |

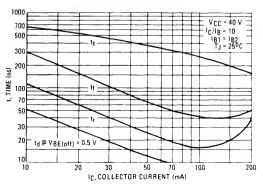
Refer to MPS8598 for graphs.

## **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub> = 25 °C unless otherwise noted)

| Characteristic                                                                                                                                                                                              | Symbol                | Min.            | Тур.              | Max.              | Unit |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|-------------------|-------------------|------|
| OFF CHARACTERISTICS                                                                                                                                                                                         |                       |                 |                   |                   |      |
| Collector-Emitter Breakdown Voltage*<br>(I <sub>C</sub> = 1 mAdc, I <sub>B</sub> = 0) BCX26<br>BCX28<br>BCX30                                                                                               | V(BR)CEO              | 60<br>80<br>100 |                   |                   | Vdc  |
| $\begin{array}{l} \mbox{Collector-Base Breakdown Voltage} \\ (I_C = 100 \ \mu \mbox{Adc}, I_E = 0) & BCX26 \\ & BCX28 \\ & BCX30 \end{array}$                                                               | · V(BR)CBO            | 60<br>80<br>100 |                   |                   | Vdc  |
| Emitter-Base Breakdown Voltage<br>(IE = 10 $\mu$ Adc, IC = 0)                                                                                                                                               | V <sub>(BR)</sub> EBO | 5.0             |                   |                   | Vdc  |
| $\begin{array}{l} \mbox{Collector Cutoff Current} \\ (V_{CB} = 40 \mbox{ Vdc} - I_E = 0) & BCX26 \\ (V_{CB} = 60 \mbox{ Vdc} - I_E = 0) & BCX28 \\ (V_{CB} = 80 \mbox{ Vdc} - I_E = 0) & BCX30 \end{array}$ | ICBO                  |                 |                   | 100<br>100<br>100 | nAdc |
| ON CHARACTERISTICS*                                                                                                                                                                                         |                       |                 |                   |                   | _    |
| DC Current Gain<br>$(I_C = 1 \text{ mAdc, V}_{CE} = 5.0 \text{ Vdc})$<br>$(I_C = 10 \text{ mAdc, V}_{CE} = 5.0 \text{ Vdc})$<br>$(I_C = 100 \text{ mAdc, V}_{CE} = 5.0 \text{ Vdc})$                        | hFE                   | 50<br>70<br>50  | 150<br>160<br>120 | 400               |      |
| Collector-Emitter Saturation Voltage<br>(I <sub>C</sub> = 100 mAdc, I <sub>B</sub> = 10 mAdc)                                                                                                               | VCE(sat)              |                 | 0.125             | 0.25              | Vdc  |
| Base-Emitter Saturation Voltage<br>( $I_C = 100 \text{ mAdc}, I_B = 10 \text{ mAdc}$ )                                                                                                                      | VBE(sat)              |                 | 0.85              |                   | Vdc  |
| Base-Emitter On Voltage<br>(IC = 10 mAdc, VCE = 5.0 Vdc)                                                                                                                                                    | VBE(on)               |                 | 0.65              | 1.0               | Vdc  |


\*Pulse test-Pulse width  $\leq$  300 µs - Duty cycle 2%

# BCX26, BCX28, BCX30


| ELECTRICAL CHARACTERISTICS (continued) (TA = | 25 °C unless otherwise noted) |
|----------------------------------------------|-------------------------------|
|----------------------------------------------|-------------------------------|

| Characteristic                                                                                                                                    | Symbol          | Min. | Typ.     | Max. | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|----------|------|------|
| SMALL SIGNAL CHARACTERISTICS                                                                                                                      |                 |      |          |      |      |
| Current Gain-Bandwidth Product<br>(IC = 50 mAdc, VCE = 5.0 Vdc, f = 100 MHz)                                                                      | fT              | 100  | 220      |      | MHz  |
| Output Capacitance - Common Base<br>(VCB = 10 Vdc, IE = 0, f = 1.0 MHz)                                                                           | C <sub>ob</sub> |      | 3.0      | 6.0  | pF   |
| Input Capacitance - Common Base<br>(V <sub>CB</sub> = 0.5 Vdc, I <sub>C</sub> = 0, f = 1.0 MHz)                                                   | C <sub>ib</sub> |      | 20       | 30   | pF   |
| Noise Figure<br>(I <sub>C</sub> = 200 μAdc, V <sub>CE</sub> = 5.0 Vdc, R <sub>S</sub> = 2.0 Kohm,<br>f = 1.0 KHz, BW = 200 Hz)                    | NF              |      | 2.0      |      | dB   |
| Input Impedance<br>(I <sub>C</sub> = 10 mAdc, V <sub>CE</sub> = 2.0 Vdc, f = 1.0 KHz)                                                             | hie             |      | 730      |      | ohm  |
| Voltage Feedback Ratio<br>(I <sub>C</sub> = 10 mAdc, V <sub>CE</sub> = 2.0 Vdc, f = 1.0 KHz)                                                      | h <sub>re</sub> |      | 1.3-10-4 |      |      |
| Small-Signal Current Gain<br>(Ic = 10 mAdc, VCE = 2.0 Vdc, f = 1.0 KHz)                                                                           | hfe             | -    | 180      |      |      |
| Output Admittance<br>(I <sub>C</sub> = 10 mAdc, V <sub>CE</sub> = 2.0 Vdc, f = 1.0 KHz)                                                           | hoe             |      | 140      |      | μmho |
| Turn - On delay Time (V <sub>BE(off)</sub> = 0.5 V, I <sub>B1</sub> = 3 mA)<br>(V <sub>CC</sub> = 40 Vdc, I <sub>C</sub> = 30 mAdc (see Figure 1) | td              |      | 20       |      | ns   |
| Rise Time (VBE(off) = 0.5 V, IB1 = 3 mA)<br>(VCC = 40 Vdc, IC = 30 mAdc (see Figure 1)                                                            | tr              |      | 40       |      | ns   |
| Storage Time ( $I_{B1} = I_{B2} = 3 \text{ mA}$ )<br>(V <sub>CC</sub> = 40 Vdc, I <sub>C</sub> = 30 mAdc (see Figure 1)                           | t <sub>s</sub>  |      | 450      |      | ns   |
| Fall Time (I <sub>B1</sub> = I <sub>B2</sub> = 3 mA)<br>(V <sub>CC</sub> = 40 Vdc, I <sub>C</sub> = 30 mAdc (see Figure 1)                        | tf              |      | 100      |      | ns   |

### FIGURE 1 - SWITCHING TIME TEST CIRCUITS



\*Total Shunt Capacitance of Test Jig and Connectors



### FIGURE 2 - SWITCHING TIMES