BD136G, BD138G, BD140G

Plastic Medium-Power Silicon PNP Transistors

This series of plastic, medium-power silicon PNP transistors are designed for use as audio amplifiers and drivers utilizing complementary or quasi complementary circuits.

Features

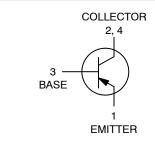
- High DC Current Gain
- BD 136, 138, 140 are complementary with BD 135, 137, 139
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

MAXIMUM RATINGS

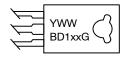
Rating	Symbol	Value	Unit
Collector-Emitter Voltage BD136G BD138G BD140G	V _{CEO}	45 60 80	Vdc
Collector-Base Voltage BD136G BD138G BD140G	V _{CBO}	45 60 100	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector Current	Ic	1.5	Adc
Base Current	I _B	0.5	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	1.25 10	Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	12.5 100	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	10	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	100	°C/W

ON Semiconductor®


www.onsemi.com

1.5 A POWER TRANSISTORS PNP SILICON 45, 60, 80 V, 12.5 W

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
BD136G	TO-225 (Pb-Free)	500 Units/Box
BD138G	TO-225 (Pb-Free)	500 Units/Box
BD140G	TO-225 (Pb-Free)	500 Units/Box

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

BD136G, BD138G, BD140G

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Collector–Emitter Sustaining Voltage (Note 1) (I _C = 0.03 Adc, I _B = 0) BD136G BD138G BD140G	BV _{CEO}	45 60 80	- - -	Vdc
Collector Cutoff Current $(V_{CB} = 30 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 30 \text{ Vdc}, I_E = 0, T_C = 125 ^{\circ}C)$	Ісво	- -	0.1 10	μAdc
Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0)	I _{EBO}	-	10	μAdc
DC Current Gain $ \begin{array}{l} \text{(I}_{C} = 0.005 \text{ A, V}_{CE} = 2 \text{ V)} \\ \text{(I}_{C} = 0.15 \text{ A, V}_{CE} = 2 \text{ V)} \\ \text{(I}_{C} = 0.5 \text{ A, V}_{CE} = 2 \text{ V)} \end{array} $	h _{FE} *	25 40 25	_ 250 _	-
Collector-Emitter Saturation Voltage (Note 1) (I _C = 0.5 Adc, I _B = 0.05 Adc)	V _{CE(sat)} *	-	0.5	Vdc
Base-Emitter On Voltage (Note 1) (I _C = 0.5 Adc, V _{CE} = 2.0 Vdc)	V _{BE(on)} *	-	1	Vdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

Figure 1. DC Current Gain

Figure 2. Collector-Emitter Saturation Voltage

^{1.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

BD136G, BD138G, BD140G

TYPICAL CHARACTERISTICS

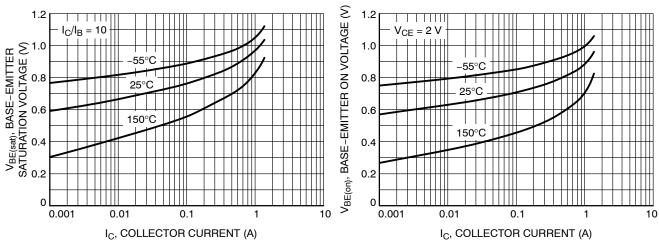


Figure 3. Base-Emitter Saturation Voltage

Figure 4. Base-Emitter On Voltage

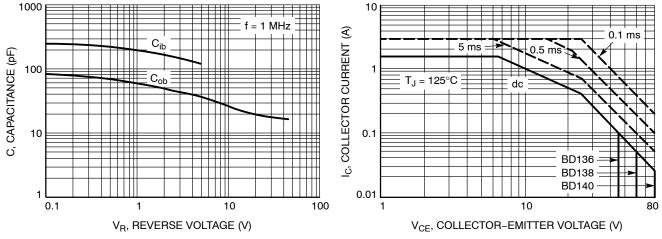


Figure 5. Capacitance

Figure 6. Active-Region Safe Operating Area

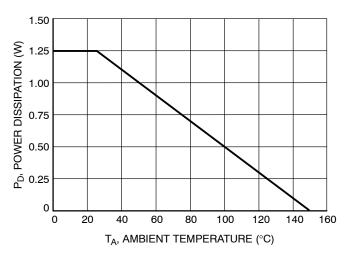
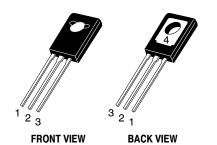
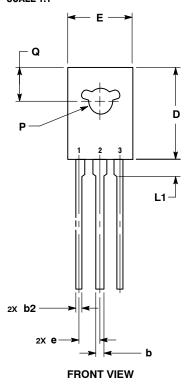
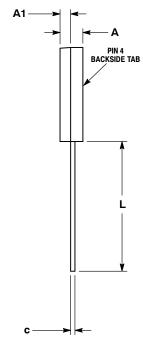



Figure 7. Power Derating

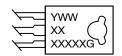

MECHANICAL CASE OUTLINE



TO-225 CASE 77-09 **ISSUE AD**

DATE 25 MAR 2015

SCALE 1:1



SIDE VIEW

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. NUMBER AND SHAPE OF LUGS OPTIONAL.

	MILLIMETERS				
DIM	MIN	MAX			
Α	2.40	3.00			
A1	1.00	1.50			
b	0.60	0.90			
b2	0.51	0.88			
С	0.39	0.63			
D	10.60	11.10			
E	7.40	7.80			
е	2.04	2.54			
L	14.50	16.63			
L1	1.27	2.54			
P	2.90	3.30			
Q	3.80 4.20				

GENERIC MARKING DIAGRAM*

= Year ww = Work Week XXXXX = Device Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

2., 4. DRAIN 3. GATE

= Pb-Free Package

	EMITTER COLLECTOR BASE	2., 4.	CATHODE ANODE GATE	STYLE 3: PIN 1. 2., 4. 3.	COLLECTOR	,	ANODE 1 ANODE 2 GATE	STYLE 5: PIN 1. 2., 4. 3.	
STYLE 6: PIN 1.	CATHODE	STYLE 7: PIN 1.	MT 1	STYLE 8: PIN 1.	SOURCE	STYLE 9: PIN 1.	GATE	STYLE 10: PIN 1.	SOURCE

2., 4. GATE 3. DRAIN

DRAIN

2., 4. 3. DRAIN

2., 4. GATE 3. MT 2

DOCUMENT NUMBER:	98ASB42049B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-225		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

2., 4. 3. GATE

ANODE

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative