

Analog Sound Processors series

Sound Processor for car audio built-in 2nd order post filter

BD37067FV-M

General Description

It is built-in input selector of 6 stereo source and output to ADC after adjusting signal level. And built-in 2nd order post filter to reduce out of band noise and 6ch Volume circuit. Moreover, it is simple to design set by built-in TDMA noise reduction systems.

Features

- AEC-Q100 (Grade3) Qualified
- Built-in differential input selector that can select single-ended / differential input
- Reduce the pop noise when switching gain due to built-in advanced switch circuit
- Less out-of-band noise of DAC by built-in 2nd order post filter.
- Built-in buffered ground isolation amplifier to realize high CMRR characteristics
- Built-in TDMA noise reduction circuit reduces the additional components for external filter.
- Package is SSOP-B40. Putting same direction input-terminals and output-terminals make PCB layout easier and PCB area smaller.
- Available to control by 3.3V / 5V for I²C-bus controller.

Applications

It is the optimal for the car audio. Besides, it is possible to use for the audio equipment of mini Compo, micro Compo.

Key Specifications

Total Harmonic Distortion: 0.003%(Typ) Maximum Input Voltage: $2.2V_{RMS}(Typ)$ 55dB(Min) Common Mode Rejection Ratio: Maximum Output Voltage: $2.1V_{RMS}(Typ)$ Output Noise Voltage: $8\mu V_{RMS}(Typ)$ Residual Output Noise Voltage: $2.5\mu V_{RMS}(Typ)$ -70dB (Typ) Ripple Rejection: Operating Temperature Range: -40 °C to +85 °C

 Package
 W(Typ) x D(Typ) x H(Max)

 SSOP-B40
 13.60mm x 7.80mm x 2.00mm

SSOP-B40

Typical Application Circuit

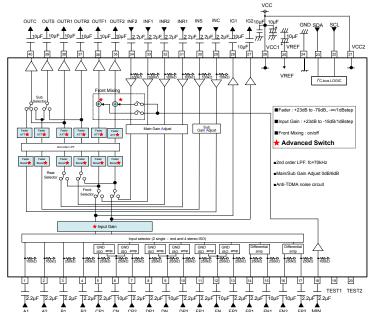


Figure 1. Typical Application Circuit

Contents

Genera	al Description	1
Feature	es	1
Applica	ations	1
Key Sp	pecifications	1
	I Application Circuit	
	nts	
	nfiguration	
	scriptions	
	Diagram	
	ite Maximum Ratings (Ta=25°C)	
Operat	ting Range	۳
	cal Characteristic	
	l Performance Curve(s)	
1 ypicai 1.	Electrical specifications and timing for bus lines and I/O stages	<i>،</i> ۱
1. 2.	I ² C-bus Format	
3.	I ² C-bus Interface Protocol	10
4.	Slave Address	10
5.	Select Address & Data	
6.	About power on reset	
7.	About start-up and power off sequence on IC	17
About A	Advanced Switch Circuit	
	ation Example	
	al Derating Curve	
	uivalence Circuit	
	ation Information	
1.	Absolute maximum rating voltage	
2.	About a signal input part	
3.	About output load characteristics	
4.	About TEST1,2 terminal(19,20pin)	
5.	About signal input terminals	30
6.	About changing gain of Input Gain and Fader Volume	
Operat	tional Notes	
1.	Reverse Connection of Power Supply	31
2.	Power Supply Lines	31
3.	Ground Voltage	
4.	Ground Wiring Pattern	
5.	Thermal Consideration	
6. 7	Recommended Operating Conditions	
7. 8.	Inrush Current Operation Under Strong Electromagnetic Field	
9.	Testing on Application Boards	
9. 10.	Inter-pin Short and Mounting Errors	32
11.	Regarding the Input Pin of the IC	32
	ng Name Selection	
	al Dimension Tape and Reel Information	
	g Diagram	
	nn History	

Pin Configuration

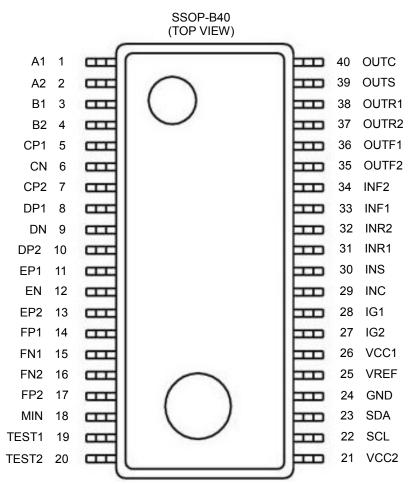


Figure 2. Pin configuration

Pin Descriptions

escripיט חוי	แบบร				
Pin No.	Pin Name	Description	Pin No.	Pin Name	Description
1	A1	A input terminal of 1ch	21	VCC2	VCC2 terminal for power supply
2	A2	A input terminal of 2ch	22	SCL	I ² C Communication clock terminal
3	B1	B input terminal of 1ch	23	SDA	I ² C Communication data terminal
4	B2	B input terminal of 2ch	24	GND	GND terminal
5	CP1	C positive input terminal of 1ch	25	VREF	BIAS terminal
6	CN	C negative input terminal	26	VCC1	VCC1 terminal for power supply
7	CP2	C positive input terminal of 2ch	27	IG2	Input Gain output terminal of 2ch
8	DP1	D positive input terminal of 1ch	28	IG1	Input Gain output terminal of 1ch
9	DN	D negative input terminal	29	INC	Center input terminal
10	DP2	D positive input terminal of 2ch	30	INS	Subwoofer input terminal
11	EP1	E positive input terminal of 1ch	31	INR1	Rear input terminal of 1ch
12	EN	E negative input terminal	32	INR2	Rear input terminal of 2ch
13	EP2	E positive input terminal of 2ch	33	INF1	Front input terminal of 1ch
14	FP1	F positive input terminal of 1ch	34	INF2	Front input terminal of 2ch
15	FN1	F negative input terminal of 1ch	35	OUTF2	Front output terminal of 2ch
16	FN2	F negative input terminal of 2ch	36	OUTF1	Front output terminal of 1ch
17	FP2	F positive input terminal of 2ch	37	OUTR2	Rear output terminal of 2ch
18	MIN	Mixing input terminal	38	OUTR1	Rear output terminal of 1ch
19	TEST1	TEST terminal	39	OUTS	Subwoofer output terminal
20	TEST2	TEST terminal	40	OUTC	Center output terminal

Block Diagram

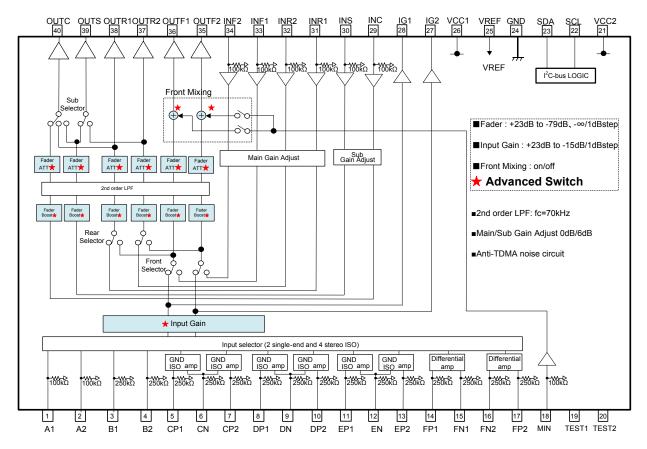


Figure 3. Block diagram and pin assign

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Power Supply Voltage	VCC (VCC1,2)	10	V
Input Voltage	V _{IN}	VCC+0.3 to GND-0.3 Only SCL, SDA 7 to GND-0.3	V
Power Dissipation	Pd	1.12 ^(Note1)	W
Storage Temperature	T _{STG}	-55 to +150	°C

(Note1) This value decreases 9mW/°C for Ta=25°C or more. ROHM standard board shall be mounted. Therma

Thermal resistance θ ja = 111.1(°C/W).

size : 70x70x1.6(mm) **ROHM Standard board**

material : A FR4 grass epoxy board(3% or less of copper foil area)

Operating Range

Parameter	Symbol	Min	Тур	Max	Unit
Power Supply Voltage	VCC (VCC1,2)	7.0	8.5	9.5	٧
Temperature	Topr	-40	-	+85	°C

Electrical Characteristic

(Unless specified particularly, Ta=25°C, VCC1,2=8.5V, f=1kHz, V_{IN} =1 V_{RMS} , R_{G} =600 Ω , R_{L} =10k Ω , A input, Input Gain 0dB, Gain Adjust +6dB, LPF ON, Fader 0dB, Input point=A1/A2, Monitor point=IG1/IG2)

				Limit			
Block	Parameter	Symbol	Min	Тур	Max	Unit	Conditions
General	Current upon no signal (I _{Q_VCC1} +I _{Q_VCC2})	la_vcc	_	35	53	mA	No signal
	Input Impedance (A)	R _{IN_S}	70	100	130	kΩ	
	Input Impedance (B, C, D, E, F)	R _{IN_D}	175	250	325	kΩ	
	Voltage Gain	G _V	-1.5	+0	+1.5	dB	Gv=20log(V _{OUT} /V _{IN})
	Channel Balance	СВ	-1.5	+0	+1.5	dB	$CB = G_{V1}-G_{V2}$
jo	Total Harmonic Distortion	THD+N	_	0.003	0.05	%	V _{OUT} =1V _{RMS} BW=400-30kHz
Input Selector	Output Noise Voltage ^(Note1)	V _{NO1}	_	3.1	8.0	μV_{RMS}	$R_G = 0\Omega$ BW = IHF-A
put S	Maximum Input Voltage	V _{IM}	2.0	2.2	_	V_{RMS}	V _{IM} at THD+N(V _{OUT})=1% BW=400-30kHz
디	Crosstalk Between Channels ^(Note1)	СТС	_	-100	-90	dB	$R_G = 0\Omega$ CTC=20log(V _{OUT} /V _{OUT} ') BW = IHF-A
	Crosstalk Between Selectors ^(Note1)	CTS	_	-100	-90	dB	$R_G = 0\Omega$ CTS=20log(V _{OUT} /V _{OUT} ') BW = IHF-A
	Common Mode Rejection Ratio (C, D, E, F) (Note1)	CMRR	55	65	_	dB	XP1 and XN input XP2 and XN input CMRR=20log(V _{IN} /V _{OUT}) BW = IHF-A, [X=C,D,E,F]
	Minimum Input Gain	G _{IN MIN}	-17	-15	-13	dB	Input gain -15dB Gin=20log(V _{OUT} /V _{IN})
Input Gain	Maximum Input Gain	G _{IN MAX}	21	23	25	dB	Input gain 23dB V _{IN} =100mV _{RMS} Gin=20log(V _{OUT} /V _{IN})
nbnt	Gain Set Error	G _{IN ERR}	-2	+0	+2	dB	GAIN=-15 to +23dB
_	Output Impedance	R _{OUT}	-	_	50	Ω	V _{IN} =100mV _{RMS}
	Maximum Output Voltage	V _{OM}	2.0	2.2	_	V_{RMS}	THD+N=1% BW=400-30kHz

 $(Note 1)\ VP-9690A\ (Average\ value\ detection,\ effective\ value\ display)\ filter\ by\ Panasonic\ is\ used\ for\ measurement.\ Input\ and\ output\ are\ in-phase.$

(Unless specified particularly, Ta=25°C, VCC1,2=8.5V, f=1kHz, V_{IN} =0.9 V_{RMS} , R_{G} =600 Ω , R_{L} =10k Ω , A input, Input Gain 0dB, Gain Adjust +6dB, LPF ON, Fader 0dB, Input point=INF1/INF2/INR1/INR2/INC/INS, Monitor point=OUTF1/OUTF2/OUTR1/OUTR2/OUTC/OUTS)

~				Limit			
Block	Parameter	Symbol	Min	Тур	Max	Unit	Conditions
_	Output Impedance	R _{OUT}	-	-	50	Ω	V _{IN} =100mV _{RMS}
Output	Maximum Output Voltage	V _{OM}	2.0	2.1	_	V _{RMS}	THD+N=1% BW=400-30kHz

(Unless specified particularly, Ta=25 $^{\circ}$ C, VCC1,2=8.5V, f=1kHz, V_{IN}=0.9V_{RMS}, R_G=600 Ω , R_L=10k Ω , A input, Input Gain 0dB, Gain Adjust +6dB, LPF ON, Fader 0dB, Input point=INF1/INF2/INR1/INR2/INC/INS, Monitor point=OUTF1/OUTF2/OUTR1/OUTR2/OUTC/OUTS)

				Limit			
Block	Parameter	Symbol	Min	Тур	Max	Unit	Conditions
	Maximum Boost Gain	G _{F BST}	21	23	25	dB	Gain=23dB V _{IN} =100mV _{RMS} G _F =20log(V _{OUT} /V _{IN}) Gain Adjust=0dB
	Channel Balance	СВ	-1.5	+0	+1.5	dB	$CB = G_{V1}-G_{V2}$
	Total Harmonic Distortion	THD+N	_	0.003	0.05	%	BW=400-30KHz
	Output Noise Voltage ^(Note1)	V _{NO1}	_	8	16	μV_{RMS}	$R_G = 0\Omega$ BW = IHF-A
	Residual Output Noise Voltage ^(Note1)	V _{NOR}	_	2.5	8.0	μV _{RMS}	Fader = $-\infty$ dB R _G = 0Ω BW = IHF-A
ler	Maximum Input Voltage	V _{IM}	2.0	2.1	_	V _{RMS}	V _{IM} at THD+N(V _{OUT})=1% BW=400-30KHz Gain Adjust = 0dB
Fader	Crosstalk Between Channels ^(Note1)	СТС	_	-100	-90	dB	$R_G = 0\Omega$ CTC=20log(V_{OUT}/V_{OUT}') BW = IHF-A
	Maximum Attenuation ^(Note1)	G _{F MIN}	1	-100	-90	dB	Fader = -∞dB G _F =20log(V _{OUT} / V _{IN}) BW = IHF-A
	Gain Set Error	G _{F ERR}	-2	+0	+2	dB	Gain=+1 to +23dB
	Attenuation Set Error 1	G _{F ERR1}	-2	+0	+2	dB	Attenuation=0 to -15dB
	Attenuation Set Error 2	G _{F ERR2}	-3	+0	+3	dB	Attenuation=-16 to -47dB
	Attenuation Set Error 3	G _{F ERR3}	-4	+0	+4	dB	Attenuation=-48 to -79dB
	Ripple Rejection	PSRR	_	-70	-40	dB	f=1kHz V _{RR} =100mV _{RMS} RR _{VCC} =20log(V _{OUT} /VCC)
	Input Impedance	R _{IN_M}	70	100	130	kΩ	VIM at THD+N(V _{OUT})=1%
ng	Maximum Input voltage	V _{IM_M}	2.0	2.2	-	V _{RMS}	BW=400-30KHz MIN input
Mixin	Maximum Attenuation ^(Note1)	G _{MX MIN}	-	-100	-85	dB	Front Mixing=OFF G _{MX} =20log(V _{OUT} /V _{IN}) BW=IHF-A MIN input
	Mixing Gain	G _{MX}	-2	+0	+2	dB	Front Mixing=ON G _{MX} =20log(V _{OUT} /V _{IN})
	Input Impedance	R _{IN_M}	70	100	130	kΩ	
Gain Adjus <mark>t</mark>	Boost Gain	G _{F BST}	4	6	8	dB	Gain=6dB V _{IN} =100mV _{RMS} G _F =20log(V _{OUT} /VI _{IN})
9	Channel Balance	СВ	-1.5	+0	+1.5	dB	CB = G _{V1} -G _{V2}

 $(Note1)\ VP-9690A\ (Average\ value\ detection,\ effective\ value\ display)\ filter\ by\ Panasonic\ is\ used\ for\ measurement.\ Input\ and\ output\ are\ in-phase.$

Typical Performance Curve(s)

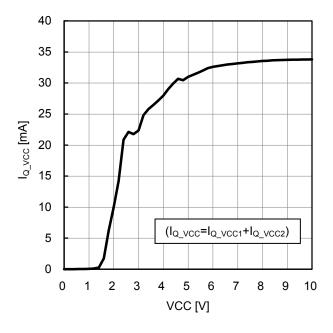


Figure 4. I_{Q_VCC} vs. VCC

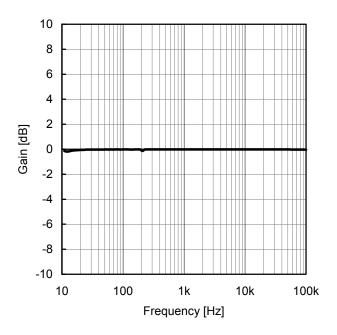


Figure 5. Gain vs. Frequency

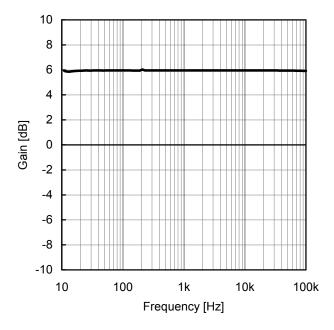


Figure 6. Gain vs. Frequency (Gain Adjust=+6dB)

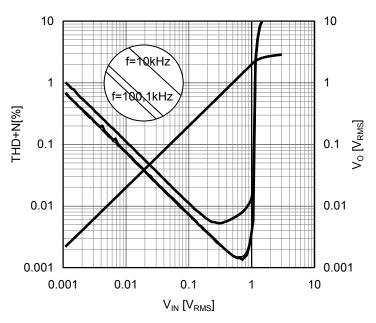


Figure 7. THD+N, V_O vs V_{IN} (Gain Adjust=+6dB)

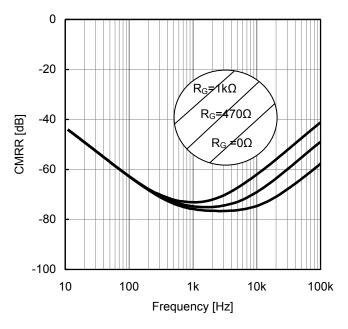


Figure 8. CMRR vs. Frequency

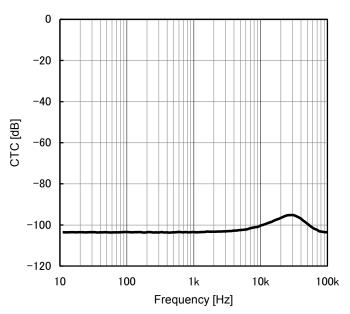


Figure 9. CTC vs. Frequency

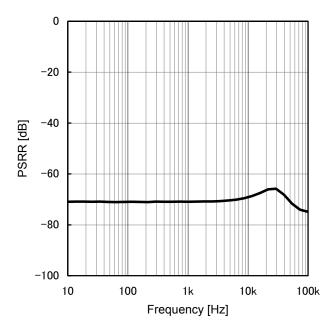


Figure 10. PSRR vs. Frequency

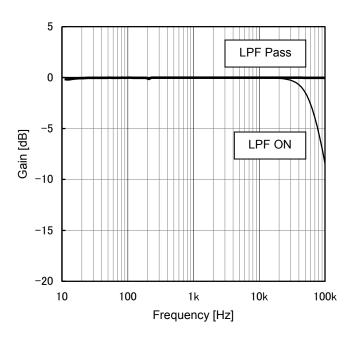


Figure 11. Gain vs Frequency (LPF ON/Pass)

I²C-bus Control Signal Specification

1. Electrical specifications and timing for bus lines and I/O stages

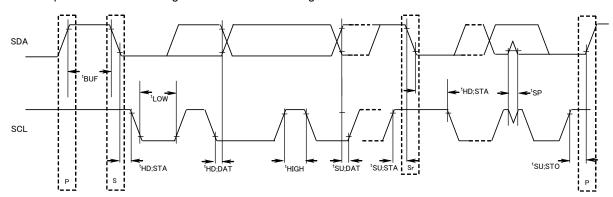
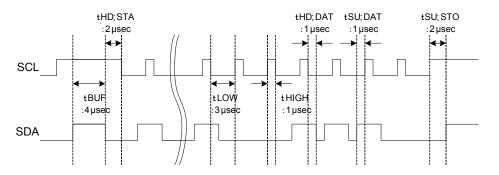


Figure 12. Definition of timing on the I²C-bus


Table 1. Characteristics of the SDA and SCL bus lines for I²C-bus devices

	Parameter	Symbol	Fast-mode I ²	C-bus	Unit
	Farameter	Symbol	Min	Max	Ullit
1	SCL Clock Frequency	fSCL	0	400	kHz
2	Bus Free time between a STOP and START condition	tBUF	1.3	_	µsec
3	Hold Time (repeated) START condition. After this period, the first clock pulse is generated	tHD;STA	0.6	_	µsec
4	LOW Period of the SCL Clock	tLOW	1.3	_	μsec
5	HIGH Period of the SCL Clock	tHIGH	0.6	_	μsec
6	Set-up time for a Repeated START Condition	tSU;STA	0.6	_	μsec
7	Data Hold Time	tHD;DAT	0*	_	μsec
8	Data set-up Time	tSU;DAT	100	_	µsec
9	Set-up Time for STOP Condition	tSU;STO	0.6	_	µsec

All values referred to VIH min. and VIL max. Levels (see Table 2.).

Table 2. Characteristics of the SDA and SCL I/O stages for I²C- bus devices

	Parameter	Symbol	Fast-mode I ²	C-bus	Unit
	Faranietei	Syllibol	Min	Max	Offic
10	LOW level input voltage: Fixed input levels	VIL	-0.5	+1	V
11	HIGH level input voltage: Fixed input levels	VIH	2.3	-	V
12	Pulse width of spikes, which must be suppressed by the input filter.	tSP	0	50	nsec
13	LOW level output voltage (open drain or open collector): At 3mA sink current	VOL1	0	0.4	V
14	Input current each I/O pin with an input voltage between 0.4V and 0.9 VDD max.	l _i	-10	+10	μΑ

SCL clock frequency:250kHz

Figure 13. I²C data transmission timing

2. I²C-bus Format

	MSB	LSB	MSB		LSB		MSB	LSB						
S	Slave Add	ress	A Select Address		Α	Data		Α	Р					
1bit	8bit		1bit	8	8bit 1l		8bit		1bit	1bit				
	S	=	= Start condition (Recognition of start bit)											
	Slave Ad	ddress =	= Recognition of slave address. 7 bits in upper order are optional.											
	The last bit must be "L" for writing.													
	Α	=	= Ack	nowledge b	it (Recogni	tion c	of acknowledgemen	t)						
	Select A	ddress =	= Add	lress for eac	ch function									
	Data	-	= Data of each function											
	Р	=	= Stop condition (Recognition of stop bit)											

3. I²C-bus Interface Protocol

1) Basic form

I	S	Slave Address	Α	Select Add	dress	Α	Data	Α	Р
Ī		MSB LSI	3	MSB	LSB	М	SB LSF	В	

2) Automatic increment(Select Address increases (+1) according to the number of data)

S Slave Address		Α	Select Add	dress	Α	Dat	a1	Α	Data	2	Α		Data	a N	Α	Р
	MSB LSE	3	MSB	LSB		MSB	LSB		MSB	LSE	3	N	1SB	LSE	3	

(Example) ① Data 1 shall be set as data of address specified by Select Address.

- ②Data 2 shall be set as data of address specified by Select Address +1.
- ③Data N shall be set as data of address specified by Select Address +(N-1).

3) Configuration unavailable for transmission (In this case, only Select Address 1 is set.)

S Slave Add	ress A	Select Address1	Α	Da	ata	Α	Select Add	ress 2	Α	Da	ta	Α	Р
MSB	LSB N	MSB LSB	Ν	1SB	LSB		MSB	LSB	Ν	1SB	LSE	3	
	(Note)If any data is transmitted as Select Address 2 next to data,												
	It is recognized as data, not as Select Address 2.												

Slave Address

MSB							LSB	
A6	A5	A4	A3	A2	A1	A0	R/W	
1	0	0	0	0	0	0	0	80(hex)

5. Select Address & Data

ltomo	Select Address	MSB				Data			LSB
Items	(hex)	D7	D6	D5	D4	D3	D2	D1	D0
Initial Setup 1	01	Advanced Switch ON/OFF	0	time o	ed Switch f Input Fader	put 0 0 0			0
Initial Setup 2	02	0	0	Sub S	elector	0 0 Rear Selector			Front Selector
Input Selector	05	0	0	0	0		Input S	elector	
Input Gain	06	0	0			Inpu	ıt Gain		
Fader 1ch Front	28				Fader Gain	/ Attenuation	on		
Fader 2ch Front	29				Fader Gain	/ Attenuation	on		
Fader 1ch Rear	2A				Fader Gain	/ Attenuation	on		
Fader 2ch Rear	2B				Fader Gain	/ Attenuation	on		
Fader Center	2C				Fader Gain	/ Attenuation	on		
Fader Subwoofer	2D				Fader Gain	/ Attenuation	on		
LPF setup Mixing	30	Front Mixing ON/OFF	LPF fc	0	0	0	0	Sub Gain Adjust	Main Gain Adjust
System Reset	FE	1	0	0	0	0	0	0	1

Advanced switch

Note) Set up bit (It is written with "0" by the above table) which hasn't been used in "0".

Notes on data format

- 1. "Advanced switch" function is available for the hatched parts on the above table.
- 2. In case of transferring data continuously, Select Address(hex) flows by Automatic increment function, as shown below.

$$\rightarrow$$
01 \rightarrow 02 \rightarrow 05 \rightarrow 06 \rightarrow 28 \rightarrow 29 \rightarrow 2A \rightarrow 2B \rightarrow 2C \rightarrow 2D \rightarrow 30

- 3. Input selector that is not corresponded for "Advanced switch" function, cannot reduce the noise caused when changing the input selector. Therefore, it is recommended to turn on mute when changing these settings.
- 4. In case of setting to infinite "-∞" by using Fader when input selector setting is changed, please consider "Advanced switch" time.

Select Address 01 (hex)

OCICOL/ ladicoo o i (iid	,,,,								
Mode	MSB	Advanced Switch time of LSB Input Gain/Fader							
	D7	D6	D5	D4	D3	D2	D1	D0	
4.7 msec	A dy can and		0	0					
7.1 msec	Advanced Switch	0	0	1	_	0	0	0	
11.2 msec	ON/OFF	0	1	0	U	U	U	U	
14.4 msec	ON/OFF		1	1					

Mode	MSB		Advanced Switch ON/OFF						
Mode	D7	D6	D5	D4	D3	D2	D1	D0	
OFF	0	0		ed Switch	0	0	0	0	
ON	1	U		of Input /Fader	U	U	U	U	

Select Address 02 (hex)

Mode	MSB			Front	Selector			LSB
Mode	D7	D6	D5	D4	D3	D2	D1	D0
FRONT	0	0	Cb. C	alaatan	0	0	Rear	0
INSIDE THROUGH	U	U	Sub S	elector	U	U	Selector	1

Mode	MSB			Rear	Selector			LSB
Mode	D7	D6	D5	D4	D3	D2	D1	D0
REAR	0	0	Cb. C	ala atau	0	0	0	Front
FRONT COPY	U	U	Sub S	Selector	U	U	1	Selector

Mode ^(Note1)	MSB	Sub Selector							
lviode.	D7	D6	D5	D4	D3	D2	D1	D0	
OUTC(INS) OUTS(INS)			0	0			Rear Selector		
OUTC(INR1) OUTS(INR2)	0	0	0	1	0	0		Front	
OUTC (INC) OUTS(INS)	0	O	1	0		0		Selector	
Prohibition			1	1					

(Note1) xxx(INxx) : "xxx" means "Output terminal", "(INxx)" means "Output signal"

Select Address 05 (hex)

Mode	MSB			Input S	Selector			LSB
Mode	D7	D6	D5	D4	D3	D2	D1	D0
Α					0	0	0	0
B single					0	0	0	1
C single					0	0	1	0
D single					0	0	1	1
E single					0	1	0	0
F single			0 1	1	0	1		
C diff	0	0	0	0	0	1	1	0
D diff			U	U	0	1	1	1
E diff					1	0	0	0
F full-diff					1	0	0	1
					1	0	1	0
Prohibition					:	:	:	:
					1	1	1	1

: Initial condition

List of active input terminal when set input selector

Mode	Lch positive input terminal	Lch negative input terminal	Rch positive input terminal	Rch negative input terminal
Α	1pin(A1)	-	2pin(A2)	-
В	3pin(B1)	-	4pin(B2)	-
C single	5pin(CP1)	-	7pin(CP2)	-
D single	8pin(DP1)	-	10pin(DP2)	-
E single	11pin(EP1)	-	13pin(EP2)	-
F single	14pin(FP1)	-	17pin(FP2)	-
C diff	5pin(CP1)	6pin(CN)	7pin(CP2)	6pin(CN)
D diff	8pin(DP1)	9pin(DN)	10pin(DP2)	9pin(DN)
E diff	11pin(EP1)	12pin(EN)	13pin(EP2)	12pin(EN)
F full-diff	14pin(FP1)	15pin(FN1)	17pin(FP2)	16pin(FN2)

(About Ground Isolation Amplifier)

Ground Isolation Amplifier : C diff to E diff

Please select this mode when you use them as a ground isolation amplifier.

Full Differential Amplifier : F full-diff

Please select this mode when you use it as a differential amplifier

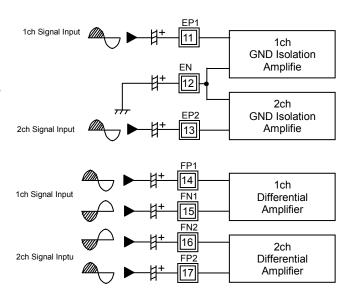


Figure 14. About Ground Isolation Amplifier

Select Address 06 (hex)

Mode	MSB				t Gain			LSB
WOOC	D7	D6	D5	D4	D3	D2	D1	D0
			0	0	0	0	0	0
Prohibition			:	:	:	:	:	:
			0	0	1	0	0	0
+23dB			0	0	1	0	0	1
+22dB			0	0	1	0	1	0
+21dB			0	0	1	0	1	1
+20dB			0	0	1	1	0	0
+19dB			0	0	1	1	0	1
+18dB			0	0	1	1	1	0
+17dB			0	0	1	1	1	1
+16dB			0	1	0	0	0	0
+15dB			0	1	0	0	0	1
+14dB			0	1	0	0	1	0
+13dB			0	1	0	0	1	1
+12dB			0	1	0	1	0	0
+11dB			0	1	0	1	0	1
+10dB			0	1	0	1	1	0
+9dB			0	1	0	1	1	1
+8dB			0	1	1	0	0	0
+7dB			0	1	1	0	0	1
+6dB			0	1	1	0	1	0
+5dB			0	1	1	0	1	1
+4dB			0	1	1	1	0	0
+3dB	0	0	0	1	1	1	0	1
+2dB			0	1	1	1	1	0
+1dB			0	1	1	1	1	1
0dB			1	0	0	0	0	0
-1dB	_		1	0	0	0	0	1
-2dB	_		1	0	0	0	1	0
-3dB	_		1	0	0	0	1	1
-3dB -4dB			1	0	0	1	0	0
- 4 dB -5dB			1	0	0	1	0	1
			1					0
-6dB	_		-	0	0	1	1	
-7dB	<u> </u> 		1	0	0	1	1	1
-8dB	_		1	0	1	0	0	0
-9dB	_		1	0	1	0	0	1
-10dB	_		1	0	1	0	1	0
-11dB			1	0	1	0	1	1
-12dB			1	0	1	1	0	0
-13dB			1	0	1	1	0	1
-14dB			1	0	1	1	1	0
-15dB			1	0	1	1	1	1
			1	1	0	0	0	0
Prohibition			:	:	:	:	:	:
			1	1	1	1	1	1

Select Address 28, 29, 2A, 2B, 2C, 2D (hex)

Gain & ATT	MSB	(- /		Fader Gain	/ Attenuatior	1		LSB
Gaill & All I	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	0	0	0
Prohibition	0	0	0	0	0	0	0	1
Proffibilion	:	:	:	:	:	:	:	:
	0	1	1	0	1	0	0	0
+23dB	0	1	1	0	1	0	0	1
+22dB	0	1	1	0	1	0	1	0
+21dB	0	1	1	0	1	0	1	1
•	•		•			•		•
				•	•	•	•	
+10dB	0	1	1	1	0	1	1	0
+9dB	0	1	1	1	0	1	1	1
+8dB	0	1	1	1	1	0	0	0
+7dB	0	1	1	1	1	0	0	1
+6dB	0	1	1	1	1	0	1	0
+5dB	0	1	1	1	1	0	1	1
+4dB	0	1	1	1	1	1	0	0
+3dB	0	1	1	1	1	1	0	1
+2dB	0	1	1	1	1	1	1	0
+1dB	0	1	1	1	1	1	1	1
0dB	1	0	0	0	0	0	0	0
-1dB	1	0	0	0	0	0	0	1
-2dB	1	0	0	0	0	0	1	0
-3dB	1	0	0	0	0	0	1	1
::	::	::	::		: :			
-78dB	1	1	0	0	1	1	1	0
-79dB	1	1	0	0	1	1	1	1
	1	1	0	1	0	0	0	0
Prohibition	:	:	:	:	:	:	:	:
	1	1	1	1	1	1	1	0
-∞dB	1	1	1	1	1	1	1	1

Select Address 30(hex)

Mode	MSB	MSB Main Gain Adjust						
Mode	D7	D6	D5	D4	D3	D2	D1	D0
0dB	Front Mixing	LPF fc	0	0	0	0	Sub Gain Adjust	0
+6dB						U		1
	N 40 D			0 1 0				1.00

Mode	MSB	MSB Sub Gain Adjust						LSB
Mode	D7	D6	D5	D4	D3	D2	D1	D0
0dB	Front	- DE 44	0	0	0	0	0	Main
+6dB	Mixing	LPF fc	U	U	U	U	1	Gain Adjust

Mode	MSB			LPF fc				
iviode	D7	D6	D5	D4	D3	D2	D1	D0
70kHz	Front	0	0	0	0	0	Sub Gain Adjust	Main
PASS	Mixing	1						Gain Adjust

Mode	MSB			Front Mixing ON/OFF				LSB
Mode	D7	D6	D5	D4	D3	D2	D1	D0
OFF	0	1 DE 44	•		0	0	Sub Gain	Main
ON	1	LPF fc	Ü	U	U	U	Adjust	Gain Adjust

6. About power on reset

It is possible for the reset circuit inside the IC to initialize when supply voltage is turned on. Please send data to all address as initial data when the supply is turned on, and turn on mute until all initial data are sent.

Itom	Cumbal	Limit			Unit	Condition	
Item	Symbol	Min	Тур	Max	Unit	Condition	
Rise time of VCC1,2	t _{RISE}	33	_	_	µsec	VCC rise time from 0V to 5V	
VCC1,2 voltage of release power on reset	V _{POR}	_	4.1	_	V		

7. About start-up and power off sequence on IC

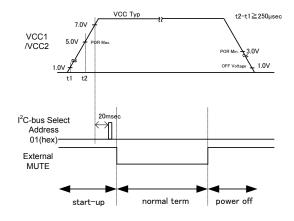


Figure 15. Power off and start-up sequence

This IC will become active-state by sending data of Select Address 01(hex) on I²C-bus after 20msec from that VCC1 and VCC2 reaches over 7.0V. Therefore, this command must always send in start-up sequence. In addition, External MUTE means recommended period that the muting outside IC.

About output terminal(27,28,35 to 40pin) vs. VCC

Bias voltage of output terminal (27,28,35 to 40pin) keep fixed voltage in operational range of VCC.

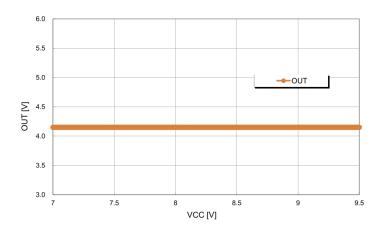


Figure 16. OUT(27,28,35 to 40pin)_DC-Bias = 4.15V fixed.

Fader Volume Attenuation of the Detail

(dB)	D7	D6	D5	D4	D3	D2	D1	D0		(dB)	D7	D6	D5	D4	D3	D2	D1	D0
+23	0	1	1	0	1	0	0	1		-29	1	0	0	1	1	1	0	1
+23	0	1	1	0	1	0	1	0		-30	1	0	0	1	1	1	1	0
+21	0	1	1	0	1	0	1	1		-30 -31	1	0	0	1	1	1	1	1
+20	_	-	-	_			0	-		-32	-	_	-	-	-		-	-
+19	0	1	1	0	1	1		0			1	0	1	0	0	0	0	0
	0	1	1	0	-	1	0	-		-33 -34	1	0	1	0	0	0	0	
+18	0	1	1		1	1	1	0			1	0	1	-		-	1	0
+17	0	1	1	0	1	1	1	1		-35	1	0	1	0	0	0	1	1
+16	0	1	1	1	0	0	0	0		-36	1	0	1	0	0	1	0	0
+15	0	1	1	1	0	0	0	1		-37	1	0	1	0	0	1	0	1
+14	0	1	1	1	0	0	1	0		-38	1	0	1	0	0	1	1	0
+13	0	1	1	1	0	0	1	1		-39	1	0	1	0	0	1	1	1
+12	0	1	1	1	0	1	0	0		-40	1	0	1	0	1	0	0	0
+11	0	1	1	1	0	1	0	1		-41	1	0	1	0	1	0	0	1
+10	0	1	1	1	0	1	1	0		-42	1	0	1	0	1	0	1	0
+9	0	1	1	1	0	1	1	1		-43	1	0	1	0	1	0	1	1
+8	0	1	1	1	1	0	0	0		-44	1	0	1	0	1	1	0	0
+7	0	1	1	1	1	0	0	1		-45	1	0	1	0	1	1	0	1
+6	0	1	1	1	1	0	1	0		-46	1	0	1	0	1	1	1	0
+5	0	1	1	1	1	0	1	1		-47	1	0	1	0	1	1	1	1
+4	0	1	1	1	1	1	0	0		-48	1	0	1	1	0	0	0	0
+3	0	1	1	1	1	1	0	1		-49	1	0	1	1	0	0	0	1
+2	0	1	1	1	1	1	1	0		-50	1	0	1	1	0	0	1	0
+1	0	1	1	1	1	1	1	1		-51	1	0	1	1	0	0	1	1
0	1	0	0	0	0	0	0	0		-52	1	0	1	1	0	1	0	0
-1	1	0	0	0	0	0	0	1		-53	1	0	1	1	0	1	0	1
-2	1	0	0	0	0	0	1	0		-54	1	0	1	1	0	1	1	0
-3	1	0	0	0	0	0	1	1		-55	1	0	1	1	0	1	1	1
-4	1	0	0	0	0	1	0	0		-56	1	0	1	1	1	0	0	0
-5	1	0	0	0	0	1	0	1		-57	1	0	1	1	1	0	0	1
-6	1	0	0	0	0	1	1	0		-58	1	0	1	1	1	0	1	0
-7	1	0	0	0	0	1	1	1		-59	1	0	1	1	1	0	1	1
-8	1	0	0	0	1	0	0	0		-60	1	0	1	1	1	1	0	0
-9	1	0	0	0	1	0	0	1		-61	1	0	1	1	1	1	0	1
-10	1	0	0	0	1	0	1	0		-62	1	0	1	1	1	1	1	0
-11	1	0	0	0	1	0	1	1		-63	1	0	1	1	1	1	1	1
-12	1	0	0	0	1	1	0	0		-64	1	1	0	0	0	0	0	0
-13	1	0	0	0	1	1	0	1		-65	1	1	0	0	0	0	0	1
-14	1	0	0	0	1	1	1	0		-66	1	1	0	0	0	0	1	0
-15	1	0	0	0	1	1	1	1		-67	1	1	0	0	0	0	1	1
-16	1	0	0	1	0	0	0	0		-68	1	1	0	0	0	1	0	0
-17	1	0	0	1	0	0	0	1		-69	1	1	0	0	0	1	0	1
-18	1	0	0	1	0	0	1	0		-70	1	1	0	0	0	1	1	0
-19	1	0	0	1	0	0	1	1		-71	1	1	0	0	0	1	1	1
-20	1	0	0	1	0	1	0	0		-72	1	1	0	0	1	0	0	0
-21	1	0	0	1	0	1	0	1		-73	1	1	0	0	1	0	0	1
-22	1	0	0	1	0	1	1	0		-74	1	1	0	0	1	0	1	0
-23	1	0	0	1	0	1	1	1		-75	1	1	0	0	1	0	1	1
-24	1	0	0	1	1	0	0	0		-76	1	1	0	0	1	1	0	0
-25	1	0	0	1	1	0	0	1		-77	1	1	0	0	1	1	0	1
-26	1	0	0	1	1	0	1	0		-78	1	1	0	0	1	1	1	0
-27	1	0	0	1	1	0	1	1		-79	1	1	0	0	1	1	1	1
-28	1	0	0	1	1	1	0	0		-∞	1	1	1	1	1	1	1	1
					•	•	-		1		•			•	•	•	•	

About Advanced Switch Circuit

[1] Advanced switch technology

1-1. Advanced switch effects

Advanced switch technology is ROHM original technology that can prevent from switching pop noise. If changing the gain setting (for example Fader) immediately, the audible signal will become discontinuously and pop noise will be occurred. This Advanced switch technology will prevent this discontinuous signal by completing the signal waveform and will significantly reduce the noise.

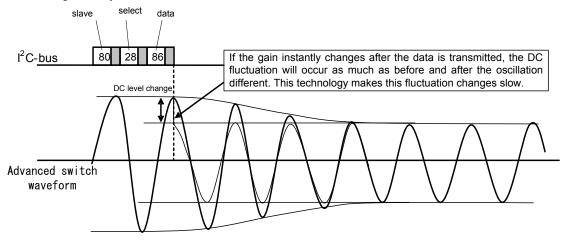
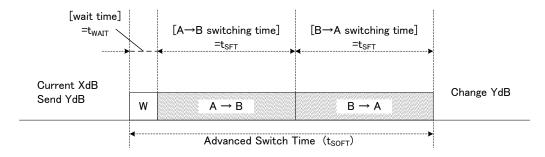


Figure 17. The explanation of advanced switch waveform

This Advanced switch circuit will start operating when the data is transmitted from microcontroller.

Advanced switch waveform is shown as the figure above. For preventing switching noise, this IC will operate optimally by internal processing after the data is transmitted from microcontroller.

However, sometimes the switching waveform is not like the intended form depends on the transmission timing. Therefore, below is the example of the relationship between the transmission timing and actual switching time. Please consider this relationship for the setting.


1-2. The kind of the Transferring Data

- Data setting that is not corresponded to Advanced switch (Page11 Select Address & Data Data format without hatching)
 There is no particular rule about transferring data.

[2] Data transmission that is corresponded to Advanced switch

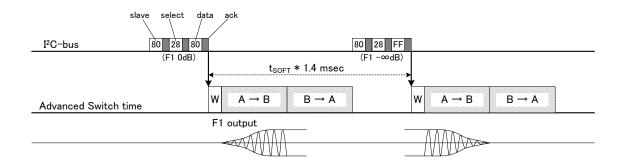
2-1. Switching time of Advanced switch

Switching time includes [t_{WAIT} (Wait time)], [t_{SFT} (A \rightarrow B switching time)] and [t_{SFT} (B \rightarrow A switching time)]. 25msec is needed per 1 switching. ($t_{SOFT} = t_{WAIT} + 2 * t_{SFT}$, $t_{WAIT} = 2.3$ msec, $t_{SFT} = 11.2$ msec)

In the figure above, Start/Stop state is expressed as "A" and temporary state is expressed as "B".

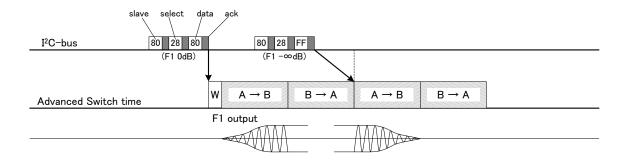
The switching sequence of Advanced switch consists of the cycle "A(start) \rightarrow B(temporary) \rightarrow A(stop)". Therefore, switching sequence will not stop at B state.

For example, switching is performed from A(Initial gain) \rightarrow B(set gain) \rightarrow A(set gain) when switching from initial gain to set gain. And switching time (t_{SFT}) of A \rightarrow B or B \rightarrow A are equal.

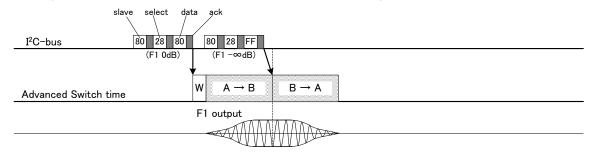

2-2. About the data transmission's timing in same block state and switching operation

■ Transmitting example 1

This is an example when transmitting data in same block with "enough interval for data transmission". (enough interval for data transmission : 1.4 x t_{SOFT} * "1.4" includes tolerance margin.)


Definition of example expression:

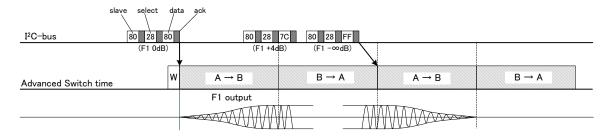
F1=Fader 1ch Front, F2=Fader 2ch Front, R1=Fader 1ch Rear, R2=Fader 2ch Rear C=Fader Center, S=Fader Subwoofer, MIX=Front Mixing


■ Transmitting example 2

This is an example when the transmission interval is not enough (smaller than "Transmission example 1"). When the data is transmitted during first switching operation, the second data will be reflected after the first switching operation. In this case, there is no wait time (t_{WAIT}) before the second switching operation.

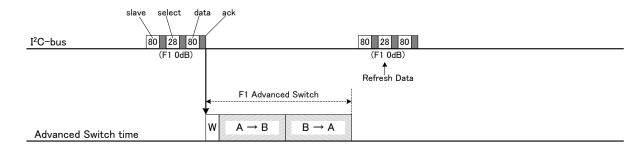
■ Transmitting example 3

This is an example of switching operation when transmission interval is smaller than "Transmission example 2"). When the data is transmitted during the first switching operation, and transmission timing is just during $A \rightarrow B$ switching operation, the second data will be reflected at $B \rightarrow A$ switching term.



■ Transmitting example 4

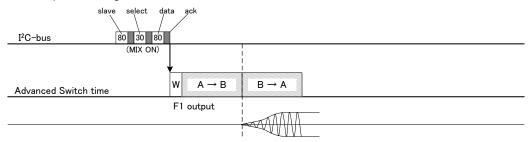
The below figure shows an example of switching operation that the data are transmitted serially with smaller transmission interval than "Transmission example 3".


IC has internal data-storage buffer and buffer transmitted data as storage data constantly.

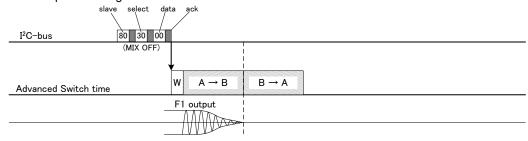
However, only the latest data is kept so, in this example, +4dB data transmitted secondly is ignored.

■ Transmitting example 5

Transmitted data is firstly buffered and written to setting data which set gain. However, when there is no difference between transmitted data and setting data such as refresh data, advanced switch operation doesn't start.

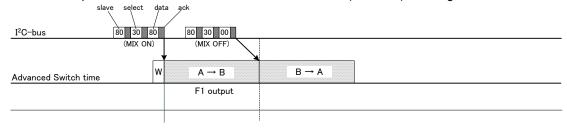


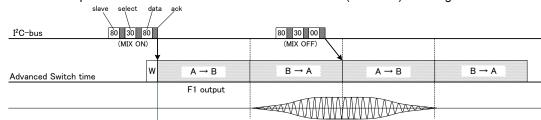
2-3. Mixing ON/OFF switching operation of Front Mixing


The action of the Mixing switching waveform is different in OFF to ON or ON to OFF.

■ Transmission example 1

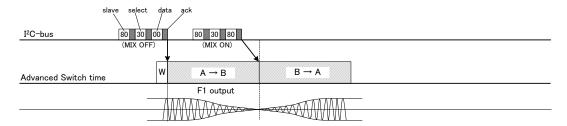
This is an example of Mixing OFF to ON state.

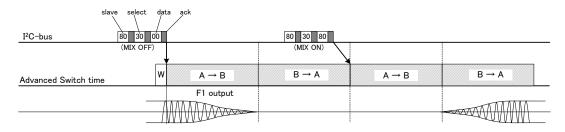

This is an example of Mixing ON to OFF state


■ Transmission example 2

This is an example when transmission ON to OFF in short interval during to Mixing switching operation.

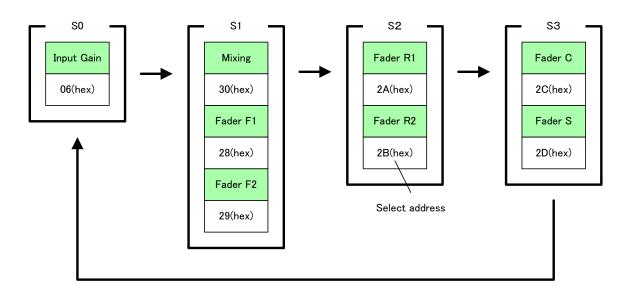
This is an example of in case of transmitted data of another status(MIX OFF) in during A→B transmission timing.


This is an example of in case of transmitted data of another status(MIX OFF) in during B→A transmission timing.


■ Transmission example 3

This is an example when transmission OFF to ON in short interval during to Mixing switching operation.

This is an example of in case of transmitted data of another status(MIX ON) in during A→B transmission timing.

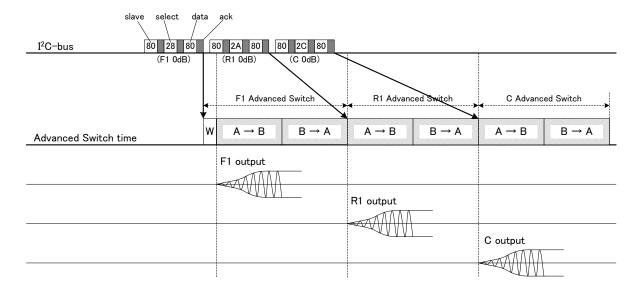


This is an example of in case of transmitted data of another status(MIX ON) in during B→A transmission timing.

2-3. About the data transmitting timing and the switching movement in several block state

When data are transmitted to several blocks, treatment in the BS (block state) unit is carried out inside the IC. The order of advanced switch movement start is decided in advance dependent on BS.

The order of advanced switch start


Note) It is possible that blocks in the same BS start switching at the same timing.

■ Transmitting example 1

About the transmission to several blocks also, as explained in the previous section, though there is no restriction of the I^2 C-bus data transmitting timing, the start timing of switching follows the figure of previous page, the order of advanced switch start.

Therefore, it isn't based on the data transmitting order, and an actual switching order becomes as the figure of previous page, "The order of advanced switch start".

Each block data is being transmitted separately in the transmitting example 1, but it becomes the same result even if data are transmitted by automatic increment.

■ Transmitting example 2

In the case that data transmission order and actual switching order is different, or data is transmitted to the block in other BS before the advanced switch operation finished, switching of next BS starts after current switching.

Application Example OUTC OUTS OUTR1 OUTR2 OUTF1 OUTF2 INF2 INS INF1 INR2 INR1

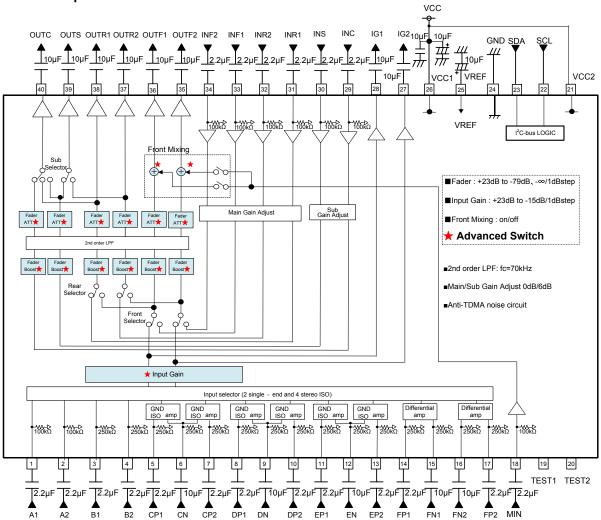


Figure 18. Application Example

Notes on wiring

- ①Please connect the decoupling capacitor of a power supply as close as possible to GND.
- 2Lines of GND shall be one-point connected.
- 3Wiring pattern of Digital shall be away from that of analog unit and cross-talk shall not be acceptable.
- (4) Lines of SCL and SDA of I2C-bus shall not be parallel if possible. The lines shall be shielded, if they are adjacent to each other.
- ⑤Lines of analog input shall not be parallel if possible. The lines shall be shielded, if they are adjacent to each other.
- ⑥About TEST1,2 terminal(19,20pin), please use with OPEN.

Thermal Derating Curve

About the thermal design by the IC

Characteristics of an IC have a great deal to do with the temperature at which it is used, and exceeding absolute maximum ratings may degrade and destroy elements. Careful consideration must be given to the heat of the IC from the two standpoints of immediate damage and long-term reliability of operation.

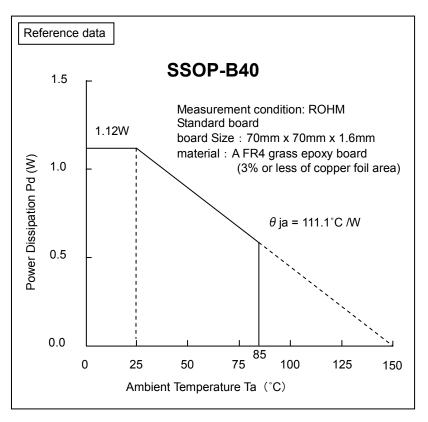


Figure 19. Temperature Derating Curve

Note) Values are actual measurements and are not guaranteed.

Note) Power dissipation values vary according to the board on which the IC is mounted.

I/O Equivalence Circuit

O Equivalen	ce Circuit			
Terminal	Terminal	Terminal	Equivalent Circuit	Terminal Description
No	Name	Voltage		
1	A1	4.15V	VCC •	Terminal for signal input
2	A2		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	The input impedance is $100k\Omega(Typ)$.
29	INC		†	
30	INS			•
31	INR1		100kΩ	
32	INR2			
33	INF1		GND \	
34	INF2		O-	
18	MIN			
3	B1	4.15V		Input terminal
4	B2	4.15		
				Single/Differential mode is selectable.
5	CP1			The input impedance is 250kΩ(Typ).
6	CN			
7	CP2		VCC •	
8	DP1			
9	DN			
10	DP2			
11	EP1			
12	EN		Δ	
13	EP2		GND \$\frac{1}{\sqrt{\sq}}\sqrt{\sq}}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}\sqrt{\sq}\sqrt{\sqrt{\sqrt{\sq}}}}}}}\signt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}\sqrt{\sqrt{\sqrt{\sq}\sqrt{\sq}\sq}\sq}\sqrt{\sq}}\sintitex{\sqrt{\sq}}}}}}\signt{\sqrt{\sqrt{\sq}}}}}}}\sqrt{	
14	FP1		Ŏ ·	
15	FN1			
16	FN2			
17	FP2			
27	ICO	4.45\/	VCC	Input Gain output terminal
27	IG2	4.15V	vcc ·	, and a second
28	IG1			
			★ 	
			* *	
			GND T	
			GND 9W	
35	OUTF2	4.15V	VCC O T	Fader output terminal
36	OUTF1	7.100		·
37	OUTR2		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
38	OUTR2 OUTR1		↑ ↓ ↓	
39	OUTS			
40	OUTC		→	
			GND	
			GND	

The figures in the pin explanation and input/output equivalent circuit is designed value, it doesn't guarantee the value.

Terminal No	Terminal Name	Terminal Voltage	Equivalent Circuit	Terminal Description
21,26	VCC (VCC1,2)	8.5V		Power supply terminal
22	SCL	_	VCC O I.65V	Terminal for clock input of I ² C-bus communication (Note) When this pin is shorted to next pin(VCC), it may result in property degradation and destruction of the device.
23	SDA	-	VCC O I.65V	Terminal for data input of I ² C-bus communication
24	GND	0V		Ground terminal
25	VREF	4.15V	VCC 12.5kΩ 4.15V	BIAS terminal Voltage for reference bias of analog signal system. The simple precharge circuit and simple discharge circuit for an external capacitor are built in.

The figures in the pin explanation and input/output equivalent circuit is designed value, it doesn't guarantee the value.

Application Information

1. Absolute maximum rating voltage

When voltage is impressed to VCC exceeding absolute maximum rating voltage, circuit current increases rapidly and it may result in property degradation and destruction of a device.

When impressed by a VCC terminal (21,26pin) especially by serge examination etc., even if it includes an of operation voltage +serge pulse component, be careful not to impress voltage (about 14V VCC terminal) much higher than absolute maximum rating voltage.

2. About a signal input part

In the signal input terminal, the value of the input coupling capacitor C(F) should be sufficient to match the value of input impedance $R_{IN}(\Omega)$ inside the IC. The first HPF characteristic of CR is as shown below.

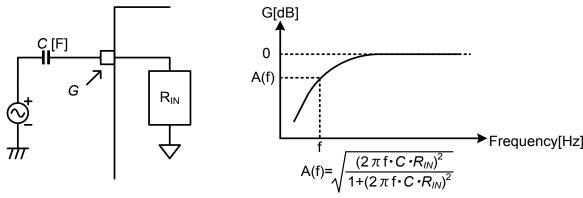


Figure 20. Input Equivalent Circuit

About output load characteristics

The usages of load for output are below (reference). Please use the load more than 10 k Ω (Typ).

Output terminal

Terminal	Terminal	Terminal	Terminal	Terminal	Terminal	Terminal	Terminal
No.	Name	No.	Name	No.	Name	No.	Name
28	IG1	36	OUTF1	38	OUTR1	40	OUTC
27	IG2	35	OUTF2	37	OUTR2	39	OUTS

Figure 21. Output load characteristic at VCC1,2=8.5V (Reference)

Application Information - continued

- 4. About TEST1,2 terminal(19,20pin)
 About TEST1,2 terminal(19,20pin), please use with OPEN.
- 5. About signal input terminals

Because the inner impedance of the terminal becomes 100 k Ω or 250 k Ω when the signal input terminal makes a terminal open, the plunge noise from outside sometimes becomes a problem. When there is an unused signal input terminal, design so it is shorted to ground.

- 6. About changing gain of Input Gain and Fader Volume
 - In case of the boost of the input gain and fader volume when changing to the high gain which exceeds 20 dB especially, the switching pop noise sometimes becomes big.
 - In this case, we recommend changing every 1 dB step without changing a gain at once.
 - Also, the pop noise sometimes can reduce by making advanced switch time long, too.

Operational Notes

1. Reverse Connection of Power Supply

Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC's power supply pins.

2. Power Supply Lines

Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors.

Ground Voltage

Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.

4. Ground Wiring Pattern

When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.

5. Thermal Consideration

Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the maximum junction temperature rating.

6. Recommended Operating Conditions

These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter.

7. Inrush Current

When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections.

8. Operation Under Strong Electromagnetic Field

Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.

9. Testing on Application Boards

When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC's power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.

Operational Notes - continued

10. Inter-pin Short and Mounting Errors

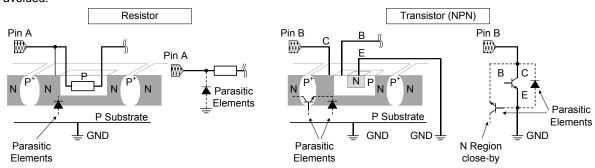
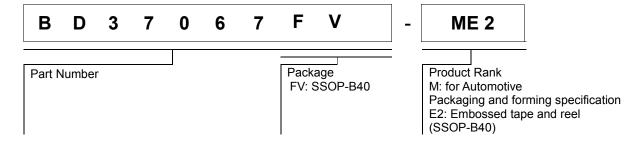
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few.

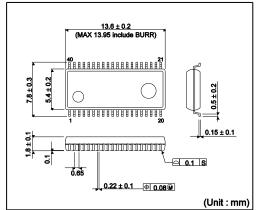
Regarding the Input Pin of the IC

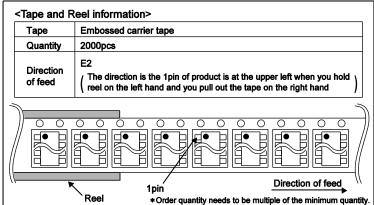
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below):

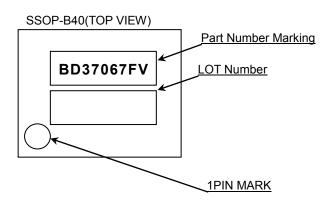
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode. When GND > Pin B, the P-N junction operates as a parasitic transistor.

Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided.


Figure 22. Example of monolithic IC structure


Ordering Name Selection


Physical Dimension Tape and Reel Information

SSOP-B40

Marking Diagram

Revision History

Date	Revision	Changes
13.MAR.2014	001	New Release
14.NOV.2016	002	 Additional specification about advanced switch operation Additional specification of power supply sequence
		Change document style of specification

Notice

Precaution on using ROHM Products

1. If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.

(Note1) Medical Equipment Classification of the Specific Applications

JAPAN	USA	EU	CHINA	
CLASSⅢ	OL ACOM	CLASS II b	OL A COTT	
CLASSIV	CLASSⅢ	CLASSⅢ	CLASSⅢ	

- 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
 - [a] Installation of protection circuits or other protective devices to improve system safety
 - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
- 3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
 - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
 - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
 - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
 - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
 - If Sealing or coating our Products with resin or other coating materials
 - [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
 - [h] Use of the Products in places subject to dew condensation
- 4. The Products are not subject to radiation-proof design.
- 5. Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature.
- 8. Confirm that operation temperature is within the specified range described in the product specification.
- 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

- 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

- 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

- 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
 - [b] the temperature or humidity exceeds those recommended by ROHM
 - [c] the Products are exposed to direct sunshine or condensation
 - [d] the Products are exposed to high Electrostatic
- Even under ROHM recommended storage condition, solderability of products out of recommended storage time period
 may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is
 exceeding the recommended storage time period.
- 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

A two-dimensional barcode printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export.

Precaution Regarding Intellectual Property Rights

- 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data.
- 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software).
- 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein.

Other Precaution

- 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

Notice-PAA-E Rev.003

General Precaution

- 1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this docume nt is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sale s representative.
- 3. The information contained in this doc ument is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

Notice – WE © 2015 ROHM Co., Ltd. All rights reserved. Rev.001

BD37067FV-M - Web Page

Distribution Inventory

Part Number	BD37067FV-M
Package	SSOP-B40
Unit Quantity	2000
Minimum Package Quantity	2000
Packing Type	Taping
Constitution Materials List	inquiry
RoHS	Yes