BF256A

BF256A is a Preferred Device

JFET - General Purpose

N-Channel

N-Channel Junction Field Effect Transistor designed for VHF and UHF applications.

- Low Cost TO-92 Type Package
- Forward Transfer Admittance, Y_{fs} = 4.5 mmhos (Min)
- Transfer Capacitance $C_{rss} = 0.7$ (Typ)
- Power Gain at f = 800 MHz, Typ. = 11 dB

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage	V _{GS}	30	Vdc
Forward Gate Current	I _{G(f)}	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	360 2.88	mW mW/°C
Operating and Storage Channel Temperature Range	T _{channel} , T _{stg}	-65 to +150	°C

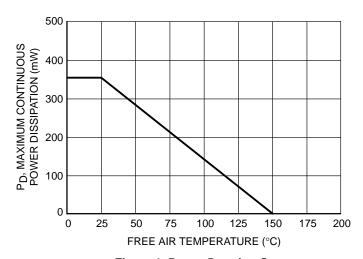
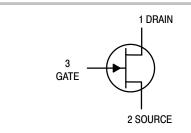
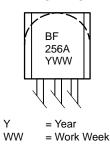



Figure 1. Power Derating Curve


ON Semiconductor™

http://onsemi.com

MARKING DIAGRAMS

ORDERING INFORMATION

Device	Package	Shipping	
BF256A	TO-92	5000 Units/Box	

Preferred devices are recommended choices for future use and best overall value.

BF256A

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					•	
Gate-Source Breakdown Voltage	$(-I_G = -1.0 \mu\text{Adc}, V_{DS} = 0)$	−V(BR)GSS	30	_	_	Vdc
Gate-Source Voltage	$(V_{DS} = 15 \text{ Vdc}, I_{D} = 200 \mu\text{A})$	-V _{GS}	0.5	_	7.5	Vdc
Gate Reverse Current	$(-V_{GS} = 20 \text{ Vdc}, V_{DS} = 0)$	-I _{GSS}	_	_	5.0	nAdc
ON CHARACTERISTICS						
Zero-Gate-Voltage Drain Current (Note 1.) $(V_{DS} = 15 \text{ Vdc}, V_{GS} = 0)$	IDSS	3.0	-	7.0	mAdc
SMALL-SIGNAL CHARACTER	RISTICS	•	•	•	-	•
Forward Transfer Admittance	(V _{DS} = 15 Vdc, V _{GS} = 0, f = 1 kHz)	Y _{fs}	4.5	5.0	_	mmhos
Reverse Transfer Capacitance	$(V_{DS} = 20 \text{ Vdc}, -V_{GS} = 1 \text{ Vdc}, f = 1 \text{ MHz})$	C _{rss}	_	0.7	-	pF
Output Capacitance	$(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0, f = 1 \text{ MHz})$	C _{oss}	_	1.0	-	pF
Cut-Off Frequency (Note 2.)	(V _{DS} = 15 Vdc, V _{GS} = 0)	fgfs	_	1000	_	MHz

^{1.} Pulse Test: Pulse Width = $300 \mu s$, Duty Cycle = 2.0%.

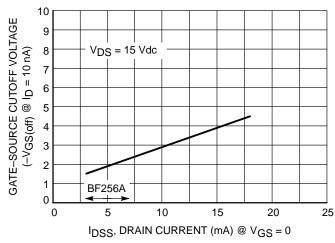


Figure 2. Correlation Between -VGS(off) and IDSS

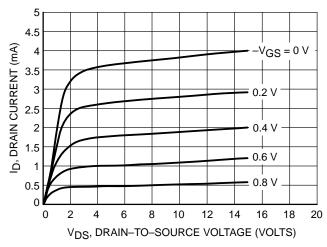


Figure 3. Drain Current versus Drain-to-Source Voltage

^{2.} The frequency at which gfs is 0.7 of its value at 1 KHz.

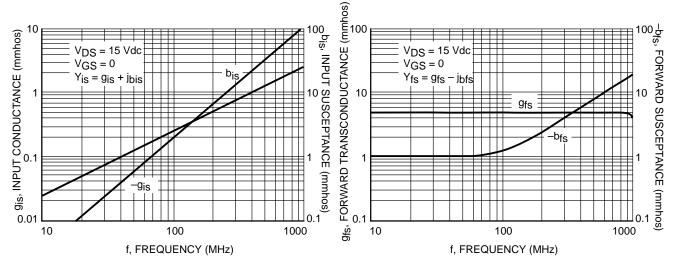


Figure 4. Input Admittance versus Frequency

Figure 5. Forward Transfer Admittance versus Frequency

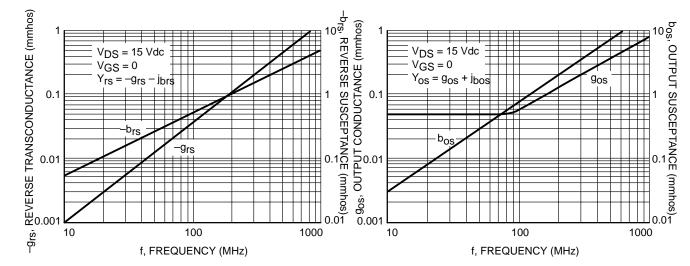
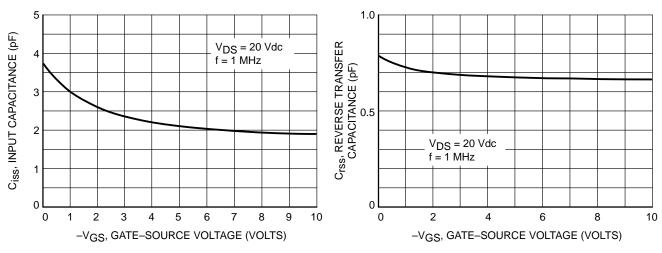


Figure 6. Reverse Transfer Admittance versus Frequency

Figure 7. Output Admittance versus Frequency



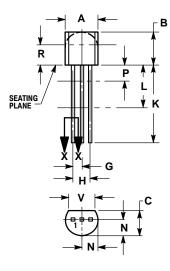

Figure 8. Input Capacitance versus Gate-Source Voltage

Figure 9. Reverse Transfer Capacitance versus Gate-Source Voltage

BF256A

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 **ISSUE AL**

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.175	0.205	4.45	5.20	
В	0.170	0.210	4.32	5.33	
C	0.125	0.165	3.18	4.19	
D	0.016	0.021	0.407	0.533	
G	0.045	0.055	1.15	1.39	
Н	0.095	0.105	2.42	2.66	
7	0.015	0.020	0.39	0.50	
K	0.500		12.70		
L	0.250		6.35		
N	0.080	0.105	2.04	2.66	
P		0.100		2.54	
R	0.115		2.93		
٧	0.135		3.43		

ON Semiconductor and was are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81-3-5740-2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.