

BFR843EL3

Robust Low Noise Broadband Pre-Matched Bipolar RF Transistor

Data Sheet

Revision 1.0, 2014-08-05

RF & Protection Devices

Edition 2014-08-05

Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

BFR843EL3, Robust Low Noise Broadband Pre-Matched Bipolar RF Transistor

Revision History: 2014-08-05, Revision 1.0

Page	Subjects (major changes since last revision)

Trademarks of Infineon Technologies AG

AURIX[™], C166[™], CanPAK[™], CIPOS[™], CIPURSE[™], EconoPACK[™], CoolMOS[™], CoolSET[™], CORECONTROL[™], CROSSAVE[™], DAVE[™], DI-POL[™], EasyPIM[™], EconoBRIDGE[™], EconoDUAL[™], EconoPIM[™], EconoPACK[™], EiceDRIVER[™], eupec[™], FCOS[™], HITFET[™], HybridPACK[™], I²RF[™], ISOFACE[™], IsoPACK[™], MIPAQ[™], ModSTACK[™], my-d[™], NovalithIC[™], OptiMOS[™], ORIGA[™], POWERCODE[™]; PRIMARION[™], PrimePACK[™], PrimeSTACK[™], PRO-SIL[™], PROFET[™], RASIC[™], ReverSave[™], SatRIC[™], SIEGET[™], SINDRION[™], SIPMOS[™], SmartLEWIS[™], SOLID FLASH[™], TEMPFET[™], thinQ![™], TRENCHSTOP[™], TriCore[™].

Other Trademarks

Advance Design System[™] (ADS) of Agilent Technologies, AMBA[™], ARM[™], MULTI-ICE[™], KEIL[™], PRIMECELL[™], REALVIEW[™], THUMB[™], µVision[™] of ARM Limited, UK. AUTOSAR[™] is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO[™] of Microsoft Corporation. FlexRay[™] is licensed by FlexRay Consortium. HYPERTERMINAL[™] of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-11-11

Table of Contents

Table of Contents

	Table of Contents 4
	List of Figures
	List of Tables
1	Product Brief
2	Features
3	Maximum Ratings
4	Thermal Characteristics
5 5.1 5.2 5.3	Electrical Characteristics 11 DC Characteristics 11 General AC Characteristics 11 Frequency Dependent AC Characteristics 12
6	Characteristic DC Diagrams
7	Characteristic AC Diagrams
8	Simulation Data
9	Package Information TSLP-3-10

List of Figures

List of Figures

Figure 4-1	Total Power Dissipation $P_{\text{tot}} = f(T_s)$	10
Figure 5-1	BFR843EL3 Testing Circuit	12
Figure 6-1	Collector Current vs. Collector Emitter Voltage $I_{\rm C} = f(V_{\rm CE})$, $I_{\rm B}$ = Parameter	16
Figure 6-2	DC Current Gain $h_{\text{FE}} = f(I_{\text{C}}), V_{\text{CE}} = 1.8 \text{ V}.$	16
Figure 6-3	Collector Current vs. Base Emitter Forward Voltage $I_{\rm C} = f(V_{\rm BE})$, $V_{\rm CE} = 1.8$ V	17
Figure 6-4	Base Current vs. Base Emitter Forward Voltage $I_{\rm B}$ = $f(V_{\rm BE})$, $V_{\rm CE}$ = 1.8 V	17
Figure 6-5	Base Current vs. Base Emitter Reverse Voltage $I_{\rm B} = f(V_{\rm EB}), V_{\rm CE} = 1.8 \text{ V} \dots \dots \dots \dots \dots$	18
Figure 7-1	3rd Order Intercept Point at Output $OIP3 = f(I_C)$, $Z_S = Z_L = 50 \Omega$, V_{CE} , $f = Parameters$	19
Figure 7-2	3rd Order Intercept Point at Output <i>OIP3</i> [dBm] = $f(I_C, V_{CE}), Z_S = Z_L = 50 \Omega, f = 5.5 \text{ GHz}$	19
Figure 7-3	Compression Point at Output OP_{1dB} [dBm] = $f(I_C, V_{CE})$, $Z_S = Z_L = 50 \Omega$, $f = 5.5 \text{ GHz}$	20
Figure 7-4	Gain G_{ma} , G_{ms} , $ S_{21} ^2 = f(f)$, $V_{CE} = 1.8 \text{ V}$, $I_C = 15 \text{ mA}$	20
Figure 7-5	Maximum Power Gain $G_{\text{max}} = f(I_{\text{C}}), V_{\text{CE}} = 1.8 \text{ V}, f = \text{Parameter in GHz}$	21
Figure 7-6	Maximum Power Gain $G_{\text{max}} = f(V_{CE})$, $I_C = 15 \text{ mA}$, $f = \text{Parameter in GHz}$	21
Figure 7-7	Input Reflection Coefficient $S_{11} = f(f)$, $V_{CE} = 1.8$ V, $I_C = 8 / 15$ mA	22
Figure 7-8	Source Impedance for Minimum Noise Figure $Z_{opt} = f(f)$, $V_{CE} = 1.8$ V, $I_C = 8 / 15$ mA	22
Figure 7-9	Output Reflection Coefficient $S_{22} = f(f)$, $V_{CE} = 1.8$ V, $I_C = 8 / 15$ mA	23
Figure 7-10	Noise Figure $NF_{min} = f(f)$, $V_{CE} = 1.8 \text{ V}$, $I_C = 8 / 15 \text{ mA}$, $Z_S = Z_{opt}$	23
Figure 7-11	Noise Figure $NF_{min} = f(I_C)$, $V_{CE} = 1.8 \text{ V}$, $Z_S = Z_{opt}$, $f = \text{Parameter in GHz}$	24
Figure 7-12	Noise Figure $NF_{50} = f(I_C)$, $V_{CE} = 1.8 \text{ V}$, $Z_S = 50 \Omega$, $f = \text{Parameter in GHz}$.	24
Figure 9-1	Package Outline	26
Figure 9-2	Package Footprint.	26
Figure 9-3	Marking Description (Marking BFR843EL3: T2)	26
Figure 9-4	Tape dimensions	26

List of Tables

List of Tables

Table 3-1	Maximum Ratings at T_A = 25 °C (unless otherwise specified)	. 9
Table 4-1	Thermal Resistance	10
Table 5-1	DC Characteristics at $T_A = 25 \text{ °C}$	11
Table 5-2	General AC Characteristics at T_A = 25 °C	11
Table 5-3	AC Characteristics, V_{CE} = 1.8 V, f = 450 MHz	12
Table 5-4	AC Characteristics, V_{CE} = 1.8 V, f = 900 MHz	12
Table 5-5	AC Characteristics, V_{CE} = 1.8 V, f = 1.5 GHz	13
Table 5-6	AC Characteristics, V_{CE} = 1.8 V, f = 1.9 GHz	13
Table 5-7	AC Characteristics, V_{CE} = 1.8 V, f = 2.4 GHz	14
Table 5-8	AC Characteristics, V_{CE} = 1.8 V, f = 3.5 GHz	14
Table 5-9	AC Characteristics, V_{CE} = 1.8 V, f = 5.5 GHz	14
Table 5-10	AC Characteristics, V_{CE} = 1.8 V, f = 10 GHz	15

Product Brief

1 Product Brief

The BFR843EL3 is a low noise broadband NPN bipolar RF transistor. Its integrated feedback provides a broadband pre-match to 50 Ω at input and output and improves the stability against parasitic oscillations. These measures simplify the design of arbitrary LNA application circuits. The device is based on Infineon's reliable high volume silicon germanium carbon (SiGe:C) heterojunction bipolar technology. The collector design supports voltages up to $V_{\rm CEO}$ = 2.25 V and currents up to $I_{\rm C}$ = 55 mA. The device is especially suited for mobile applications in which low power consumption is a key requirement. The transistor is fitted with internal protection circuits, which enhance the robustness against electrostatic discharge (ESD) and against high levels of RF input power. The device is housed in a very small thin leadless plastic package, ideal for modules.

Features

2 Features

- Low noise broadband NPN RF transistor based on Infineon's reliable, high volume SiGe:C bipolar technology
- High maximum RF input power and ESD robustness
- Unique combination of high RF performance, robustness and ease of application circuit design
- Low noise figure: NF_{min} = 1 dB at 2.4 GHz and 1.15 dB at 5.5 GHz, 1.8 V, 8 mA
- High gain |S₂₁|² = 22 dB at 2.4 GHz and 16.5 dB at 5.5 GHz, 1.8 V, 15 mA
- OIP3 = 22 dBm at 2.4 GHz and 5.5 GHz, 1.8 V, 25 mA
- Ideal for low voltage applications e.g. V_{CC} = 1.2 V and 1.8 V (2.85 V, 3.3 V, 3.6 V requires corresponding collector resistor)
- Low power consumption, ideal for mobile applications
- Pb-free (RoHS compliant) and halogen-free very small thin leadless plastic package

Applications

As Low Noise Amplifier (LNA) in

- Wireless Communications: WLAN IEEE802.11b,g,n,a,ac single- and dual band applications, broadband LTE or WiMAX LNA
- Satellite navigation systems (e.g. GPS, GLONASS, COMPASS...) and satellite C-band LNB (1st and 2nd stage LNA)
- Broadband amplifiers: Dualband WLAN, multiband mobile phone, UWB up to 10 GHz
- ISM bands up to 10 GHz
- Dedicated short range communication (DSRC) systems: WLAN IEEE802.11p

Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions

Product Name	Package	Pi	n Configurati	Marking	
BFR843EL3	TSLP-3-10	1 = B	2 = C	3 = E	T2

Maximum Ratings

3 Maximum Ratings

Parameter	Symbol	Values		Unit	Note / Test Condition	
		Min.	Min. Max.			
Collector emitter voltage	V _{CEO}	-	2.25 2.0	V	$T_{\rm A}$ = 25 °C $T_{\rm A}$ = -55 °C Open base	
Collector emitter voltage ¹⁾	V _{CES}	-	2.25 2.0	V	$T_{A} = 25 \text{ °C}$ $T_{A} = -55 \text{ °C}$ E-B short circuited	
Collector base voltage ²⁾	V _{CBO}	-	2.9 2.6	V	$T_A = 25 \degree C$ $T_A = -55 \degree C$ Open emitter	
Base current	IB	-1	5	mA		
Collector current	I _C	-	55	mA		
RF input power	P _{RFin}	-	20	dBm	f = 1.9 GHz, matched to 50 Ω	
ESD stress pulse	V _{ESD}	-1	+1	kV	HBM, all pins, acc. to JESD22-A114	
Total power dissipation ³⁾	P _{tot}	-	125	mW	$T_{\rm S} \le$ 103 °C	
Junction temperature	TJ	-	150	°C		
Storage temperature	T_{Stg}	-55	150	°C		

Table 3-1 Maximum Ratings at T_A = 25 °C (unless otherwise specified)

1) V_{CES} is identical to V_{CEO} due to design

2) $V_{\rm CBO}$ is similar to $V_{\rm CEO}$ due to design

3) $T_{\rm S}$ is the soldering point temperature. $T_{\rm S}$ is measured on the emitter lead at the soldering point of the pcb.

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

4 Thermal Characteristics

Table 4-1 Thermal Resistance

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Junction - soldering point ¹⁾	R _{th.IS}	_	375	-	K/W	-

1) For the definition of R_{thJS} please refer to Application Note AN077 (Thermal Resistance Calculation).

Figure 4-1 Total Power Dissipation $P_{tot} = f(T_s)$

5 Electrical Characteristics

5.1 DC Characteristics

Table 5-1 DC Characteristics at $T_A = 25 \text{ °C}$

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.	-		
Collector emitter breakdown voltage	$V_{\rm (BR)CEO}$	2.25	2.6		V	$I_{\rm C}$ = 1 mA, $I_{\rm B}$ = 0 Open base	
Collector emitter leakage current	I _{CES}	-	-	400	nA	$V_{\rm CE}$ = 1.5 V, $V_{\rm BE}$ = 0 E-B short circuited	
Collector base leakage current	I _{CBO}	-	-	400	nA	$V_{\rm CB}$ = 1.5 V, $I_{\rm E}$ = 0 Open emitter	
Emitter base leakage current	I _{EBO}	-	-	10	μA	$V_{\rm EB}$ = 0.5 V, $I_{\rm C}$ = 0 Open collector	
DC current gain	h _{FE}	230 -	360 260	580 -		$V_{\rm CE}$ = 1.8 V, $I_{\rm C}$ = 1 mA $V_{\rm CE}$ = 1.8 V, $I_{\rm C}$ = 15 mA Pulse measured	

5.2 General AC Characteristics

Table 5-2 General AC Characteristics at $T_A = 25 \text{ °C}$

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.	х.		
Collector base capacitance ¹⁾	C _{CB}	-	5.26 0.07	-	pF	f = 1 MHz f = 1 GHz V_{CB} = 1.8 V, V_{BE} = 0 Emitter grounded	
Collector emitter capacitance	C _{CE}	-	0.42	-	pF	f = 1 MHz V_{CE} = 1.8 V, V_{BE} = 0 Base grounded	
Emitter base capacitance	C _{EB}	-	0.66	-	pF	f = 1 MHz $V_{\text{EB}} = 0.4 \text{ V}, V_{\text{CB}} = 0$ Collector grounded	

1) Including integrated feedback capacitance

5.3 Frequency Dependent AC Characteristics

Measurement setup is a test fixture with Bias T's in a 50 Ω system, T_A = 25 °C

Table 5-3	AC Characteristics,	$V_{CE} = 1.8 \text{ V}, f = 450 \text{ MHz}$
		, CE

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Power Gain					dB	
Maximum power gain	$G_{\sf ms}$	_	25.5	_		I _C = 15 mA
Transducer gain	$ S_{21} ^2$	-	24.5	-		$I_{\rm C} = 15 {\rm mA}$
Minimum Noise Figure					dB	
Minimum noise figure	NF _{min}	_	0.95	_		$I_{\rm C}$ = 8 mA
Associated gain	G_{ass}	-	22.5	-		$I_{\rm C}$ = 8 mA
Linearity					dBm	$Z_{\rm S} = Z_{\rm L} = 50 \Omega$
1 dB compression point at output	OP_{1dB}	_	7.5	_		$I_{\rm C} = 15 {\rm mA}$
3rd order intercept point at output	OIP3	-	23	-		I _C = 15 mA

Table 5-4 AC Characteristics, V_{CE} = 1.8 V, f = 900 MHz

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Power Gain					dB	
Maximum power gain	G_{ms}	-	25	-		I _C = 15 mA
Transducer gain	$ S_{21} ^2$	-	24	-		I _C = 15 mA

Table 5-4AC Characteristics, V_{CE} = 1.8 V, f = 900 MHz (cont'd)

Parameter	Symbol		Value	S	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Minimum Noise Figure					dB	
Minimum noise figure	NF_{min}	_	0.95	_		I _C = 8 mA
Associated gain	G_{ass}	_	22	-		$I_{\rm C}$ = 8 mA
Linearity					dBm	$Z_{\rm S} = Z_{\rm I} = 50 \ \Omega$
1 dB compression point at output	OP_{1dB}	_	7	_		$I_{\rm C} = 15 \mathrm{mA}$
3rd order intercept point at output	OIP3	-	21.5	-		$I_{\rm C}$ = 15 mA

Table 5-5 AC Characteristics, V_{CE} = 1.8 V, f = 1.5 GHz

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Power Gain					dB	
Maximum power gain	$G_{\sf ms}$	_	24.5	-		<i>I</i> _C = 15 mA
Transducer gain	$ S_{21} ^2$	-	23	-		$I_{\rm C} = 15 {\rm mA}$
Minimum Noise Figure					dB	
Minimum noise figure	NF_{min}	_	0.95	-		<i>I</i> _C = 8 mA
Associated gain	G_{ass}	-	21.5	-		$I_{\rm C}$ = 8 mA
Linearity					dBm	$Z_{\rm S} = Z_{\rm L} = 50 \Omega$
1 dB compression point at output	OP_{1dB}	_	7	-		$I_{\rm C} = 15 {\rm mA}$
3rd order intercept point at output	OIP3	-	21.5	-		I _C = 15 mA

Table 5-6 AC Characteristics, V_{CE} = 1.8 V, f = 1.9 GHz

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Power Gain					dB	
Maximum power gain	$G_{\sf ms}$	-	24.5	_		I _C = 15 mA
Transducer gain	$ S_{21} ^2$	-	22.5	_		$I_{\rm C} = 15 {\rm mA}$
Minimum Noise Figure					dB	
Minimum noise figure	NF_{min}	-	1	_		<i>I</i> _C = 8 mA
Associated gain	G_{ass}	-	21	_		$I_{\rm C}$ = 8 mA
Linearity					dBm	$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$
1 dB compression point at output	OP_{1dB}	-	7	_		I _c = 15 mA
3rd order intercept point at output	OIP3	-	21	-		I _C = 15 mA

Table 5-7 AC Characteristics, V_{CE} = 1.8 V, f = 2.4 GHz

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Power Gain					dB	
Maximum power gain	G_{ms}	_	24	_		I _C = 15 mA
Transducer gain	$ S_{21} ^2$	-	22	-		$I_{\rm C}$ = 15 mA
Minimum Noise Figure					dB	
Minimum noise figure	NF_{min}	-	1	_		<i>I</i> _C = 8 mA
Associated gain	G_{ass}	-	20	-		$I_{\rm C}$ = 8 mA
Linearity					dBm	$Z_{\rm S} = Z_{\rm I} = 50 \Omega$
1 dB compression point at output	OP_{1dB}	-	6	_		$I_{\rm C} = 15$ mA
3rd order intercept point at output	OIP3	-	20.5	-		I _C = 15 mA

Table 5-8 AC Characteristics, V_{CE} = 1.8 V, f = 3.5 GHz

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Power Gain					dB	
Maximum power gain	$G_{\sf ms}$	_	23	_		I _C = 15 mA
Transducer gain	$ S_{21} ^2$	-	19.5	-		$I_{\rm C} = 15 {\rm mA}$
Minimum Noise Figure					dB	
Minimum noise figure	NF _{min}	_	1.05	_		$I_{\rm C}$ = 8 mA
Associated gain	G_{ass}	-	18.5	_		$I_{\rm C}$ = 8 mA
Linearity					dBm	$Z_{\rm S} = Z_{\rm L} = 50 \Omega$
1 dB compression point at output	OP_{1dB}	_	6	_		$I_{\rm C} = 15 {\rm mA}$
3rd order intercept point at output	OIP3	-	20.5	-		I _C = 15 mA

Table 5-9 AC Characteristics, V_{CE} = 1.8 V, f = 5.5 GHz

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Power Gain					dB	
Maximum power gain	$G_{\sf ms}$	_	21.5	_		<i>I</i> _C = 15 mA
Transducer gain	$ S_{21} ^2$	-	16.5	_		I _C = 15 mA
Minimum Noise Figure					dB	
Minimum noise figure	NF_{min}	_	1.15	_		I _C = 8 mA
Associated gain	G_{ass}	-	15.5	_		$I_{\rm C}$ = 8 mA
Linearity					dBm	$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$
1 dB compression point at output	OP_{1dB}	-	4.5	_		$I_{\rm C} = 15 {\rm mA}$
3rd order intercept point at output	OIP3	-	20.5	-		I _c = 15 mA

Parameter	Symbol		Values	\$	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Power Gain					dB	
Maximum power gain	G_{ms}	-	14.5	-		I _C = 15 mA
Transducer gain	$ S_{21} ^2$	_	10.5	_		$I_{\rm C} = 15 {\rm mA}$
Minimum Noise Figure					dB	
Minimum noise figure	NF _{min}	_	1.35	-		$I_{\rm C}$ = 8 mA
Associated gain	G_{ass}	-	10.5	-		$I_{\rm C}$ = 8 mA
Linearity					dBm	$Z_{\rm S} = Z_{\rm I} = 50 \ \Omega$
1 dB compression point at output	OP_{1dB}	-	1.5	-		$I_{\rm C} = 15$ mA
3rd order intercept point at output	OIP3	-	17	-		I _C = 15 mA

Table 5-10 AC Characteristics, V_{CE} = 1.8 V, f = 10 GHz

Note: OIP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50 Ω from 0.2 MHz to 12 GHz.

Figure 6-1 Collector Current vs. Collector Emitter Voltage $I_{c} = f(V_{CE})$, I_{B} = Parameter

Figure 6-2 DC Current Gain $h_{FE} = f(I_C), V_{CE} = 1.8 V$

Figure 6-3 Collector Current vs. Base Emitter Forward Voltage $I_{\rm C}$ = $f(V_{\rm BE})$, $V_{\rm CE}$ = 1.8 V

Figure 6-4 Base Current vs. Base Emitter Forward Voltage $I_{\rm B}$ = $f(V_{\rm BE})$, $V_{\rm CE}$ = 1.8 V

Figure 6-5 Base Current vs. Base Emitter Reverse Voltage $I_{\rm B}$ = $f(V_{\rm EB})$, $V_{\rm CE}$ = 1.8 V

Figure 7-1 3rd Order Intercept Point at Output $OIP3 = f(I_c), Z_s = Z_L = 50 \Omega, V_{CE}, f = Parameters$

Figure 7-2 3rd Order Intercept Point at Output *OIP3* [dBm] = $f(I_c, V_{CE}), Z_s = Z_L = 50 \Omega, f = 5.5 \text{ GHz}$

Figure 7-3 Compression Point at Output OP_{1dB} [dBm] = $f(I_C, V_{CE}), Z_S = Z_L = 50 \Omega, f = 5.5 \text{ GHz}$

Figure 7-4 Gain G_{ma} , G_{ms} , $|S_{21}|^2 = f(f)$, $V_{CE} = 1.8 \text{ V}$, $I_C = 15 \text{ mA}$

Figure 7-5 Maximum Power Gain $G_{max} = f(I_c), V_{CE} = 1.8 V, f = Parameter in GHz$

Figure 7-6 Maximum Power Gain $G_{max} = f(V_{CE})$, $I_{C} = 15 \text{ mA}$, f = Parameter in GHz

Figure 7-7 Input Reflection Coefficient $S_{11} = f(f)$, $V_{CE} = 1.8$ V, $I_C = 8 / 15$ mA

Figure 7-8 Source Impedance for Minimum Noise Figure $Z_{opt} = f(f)$, $V_{CE} = 1.8$ V, $I_{C} = 8 / 15$ mA

Figure 7-9 Output Reflection Coefficient $S_{22} = f(f)$, $V_{CE} = 1.8 \text{ V}$, $I_C = 8 / 15 \text{ mA}$

Figure 7-10 Noise Figure $NF_{min} = f(f)$, $V_{CE} = 1.8$ V, $I_C = 8 / 15$ mA, $Z_S = Z_{opt}$

Figure 7-11 Noise Figure $NF_{min} = f(I_{C}), V_{CE} = 1.8 \text{ V}, Z_{S} = Z_{opt}, f = Parameter in GHz$

Figure 7-12 Noise Figure $NF_{50} = f(I_c), V_{CE} = 1.8 \text{ V}, Z_S = 50 \Omega, f = \text{Parameter in GHz}$

Note: The curves shown in this chapter have been generated using typical devices but shall not be considered as a guarantee that all devices have identical characteristic curves. $T_A = 25$ °C.

Simulation Data

8 Simulation Data

For the SPICE Gummel Poon (GP) model as well as for the S-parameters (including noise parameters) please refer to our internet website. Please consult our website and download the latest versions before actually starting your design.

You find the BFR843EL3 SPICE GP model in the internet in MWO- and ADS-format, which you can import into these circuit simulation tools very quickly and conveniently. The model already contains the package parasitics and is ready to use for DC and high frequency simulations. The terminals of the model circuit correspond to the pin configuration of the device.

The model parameters have been extracted and verified up to 12 GHz using typical devices. The BFR843EL3 SPICE GP model reflects the typical DC- and RF-performance within the limitations which are given by the SPICE GP model itself. Besides the DC characteristics all S-parameters in magnitude and phase, as well as noise figure (including optimum source impedance, equivalent noise resistance and flicker noise) and intermodulation have been extracted.

Package Information TSLP-3-10

9 Package Information TSLP-3-10

Figure 9-1 Package Outline

Figure 9-2 Package Footprint

Figure 9-3 Marking Description (Marking BFR843EL3: T2)

Figure 9-4 Tape dimensions

www.infineon.com

Published by Infineon Technologies AG