

3 Watt Mono Filter-Free Class-D Audio Power Amplifier

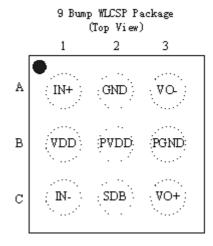
Features

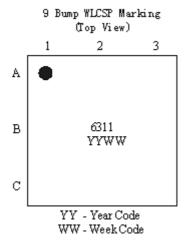
 \Box Efficiency With an 8-Ω Speaker:

88% at 400 mW 80% at 100 mW

- ☐ 2.6mA Quiescent Current
- □ 0.4μA Shutdown Current
- ☐ Optimized PWM Output Stage Eliminates LC Output Filter
- ☐ Internally Generated 250-kHz Switching Frequency Eliminates Capacitor and Resistor
- ☐ Improved PSRR (-75 dB) and Wide Supply Voltage (2.8 V to 5.5 V) Eliminates Need for a Voltage Regulator
- ☐ Fully Differential Design Reduces RF Rectification and Eliminates Bypass Capacitor
- ☐ Improved CMRR Eliminates Two Input Coupling Capacitors
- ☐ Available in space-saving package: 9-bump WLCSP

General Description

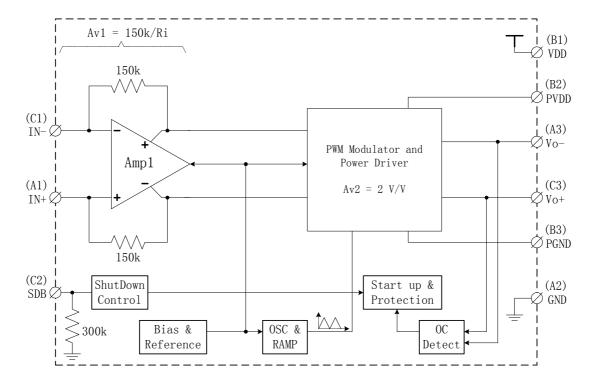

The BL6311B is a 3-W high efficiency filter-free class-D audio power amplifier in a wafer chip scale package (WCSP) that requires only three external components.


Features like 88% efficiency, -75dB PSRR, and improved RF-rectification immunity make the BL6311B ideal for cellular handsets. In cellular handsets, the earpiece, speaker phone, and melody ringer can each be driven by the BL6311B.

Applications

- ☐ Mobile phone、PDA
- ☐ MP3/4、PMP
- Portable electronic devices

Pin Diagrams



Pin Description

Pin#	Name	Description
A1	IN+	Positive differential input
A2	GND	Power Ground
A3	VO-	Negative BTL output
B1	VDD	Power Supply
B2	PVDD	Power Supply
В3	PGND	Power Ground
C1	IN-	Negative differential input
C2	SDB	Shutdown terminal (low active)
C3	VO+	Positive BTL output

Function Block Diagram

Notes: Total Voltage Gain = $Av1 \times Av2 = 2 \times \frac{150k}{R_I}$

Figure 1. Function Block Diagram

Application Circuit

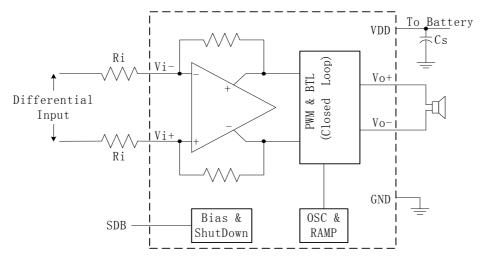


Figure 2. BL6311B Application Schematic With Differential Input

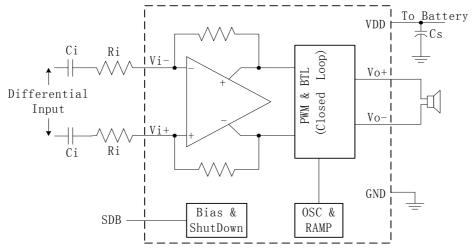


Figure 3. BL6311B Application Schematic With Differential Input and Input Capacitors

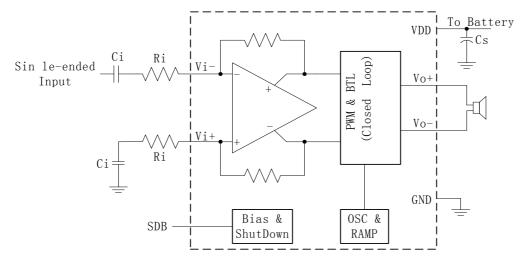


Figure 4. BL6311B Application Schematic With Single-Ended Input

Absolute Maximum Ratings

Supply voltage	-0.3V to 6V		
Input voltage	-0.3V to VDD+0.3V		
Junction Temperature	-40 to +150		
Storage Temperature	-65 to +150		

Note: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

Recommended Operating Conditions

	Min	Max	Unit
Supply Voltage	2.8	5.5	V
Shutdown Voltage Input High	1.3	VDD	V
Shutdown Voltage Input Low	0	0.4	V

Electrical Characteristics

The following specifications apply for the circuit shown in Figure 5.

 $T_A = 25$, unless otherwise specified.

Crmbal	Donomoton	Conditions	Spec			T] :4
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I_{SD}	Shutdown Current	V _{IN} =0V, V _{SDB} =0V, No Load		0.4	2	uA
		$V_{DD} = 2.8V$, $V_{IN} = 0V$, No Load		2.2		
I_Q	Quiescent Current	$V_{DD} = 3.6V, V_{IN} = 0V, No Load$		2.6		mA
		$V_{DD} = 5.5V$, $V_{IN} = 0V$, No Load		4.0	8	
W	Output Offact Valtage	$V_{IN} = 0V, A_V = 2V/V,$		2	25	mV
$ V_{OS} $	Output Offset Voltage	$V_{DD} = 2.8V \text{ to } 5.5V$		2	25	
PSRR	Power Supply Rejection Ratio	$V_{DD} = 2.8V \text{ to } 5.5V$		-75		dB
		$V_{DD} = 2.8V \text{ to } 5.5V,$				
CMRR	Common Mode Rejection Ratio	$V_{IC} = V_{DD}/2$ to 0.5V,		-68		dB
		$V_{IC} = V_{DD}/2$ to $V_{DD} - 0.8V$				
F_{SW}	Modulation frequency	$V_{DD} = 2.8V \text{ to } 5.5V$	200	250	300	kHz
	V-14	V 20V4- 5 5V	285k	300k	315k	X//X/
A_{V}	Voltage gain	$V_{\rm DD} = 2.8 \text{V to } 5.5 \text{V}$	R_{I}	R_{I}	R_{I}	V/V
R_{SDB}	Resistance from SDB to GND			300		kΩ
$Z_{\rm I}$	Input impedance		142	150	158	kΩ
$T_{ m WU}$	Wake-up time from shutdown	$V_{DD} = 3.6V$		32		mS
	Drain-Source resistance (on-state)	$V_{DD} = 2.8V$		700		
$r_{DS(on)}$		$V_{DD} = 3.6V$		500		mΩ
		$V_{\rm DD} = 5.5 \mathrm{V}$		400		

Operating Characteristics

\Box $V_{DD} = 5V$, $R_I = 150k\Omega$, $T_A = 25$, unless otherwise specified.

Symbol	Parameter Conditions	Spec			Units	
Symbol	rarameter	Conditions	Min.	Тур.	Max.	Omis
		THD+N=10%, f=1KHz, $R_L = 4\Omega$		3.0		
D	Output Borren	THD+N=1%, f=1KHz, $R_L = 4\Omega$		2.4		W
P _O	Output Power	put Power THD+N=10%, f=1KHz, $R_L = 8\Omega$		1.7		
		THD+N=1%, f=1KHz, $R_L = 8\Omega$		1.4		
THD. N	Total Harmonic	D 10W C1HI D 00		0.1		%
THD+N	Distortion + Noise	Po=1.0Wrms, f=1kHz, $R_L = 8\Omega$				
SNR	Signal-to-Noise ratio	V_{DD} =5V, Po=1.0Wrms, $R_L = 8\Omega$		97		dB

$\begin{tabular}{ll} \hline & V_{DD} = 3.6V, R_I = 150 k\Omega, T_A = 25 \\ \hline & , unless otherwise specified. \\ \hline \end{tabular}$

Ch al	Parameter Conditions		Spec			T I 24	
Symbol				Min.	Тур.	Max.	Units
		THD+N=10%, f=1KHz, $R_L = 4$	Ω		1.5		
l p	Outroot Domes	THD+N=1%, f=1KHz, $R_L = 4\Omega$	2		1.2		***
P _O	Output Power	THD+N=10%, f=1KHz, $R_L = 8$	Ω		0.9		W
		THD+N=1%, f=1KHz, $R_L = 8\Omega$	2		0.7		
THD+N	Total Harmonic Distortion + Noise	Po=0.5Wrms, f=1kHz, $R_L = 8\Omega$			0.1		%
K _{SVR}	Supply ripple rejection ratio	V_{DD} = 3.6V, input ac-grounded with C_I = 2uF f=217Hz, V(Ripple)=200m V_{PP}			-68		dB
W	Output valtage maise	$V_{\rm DD} = 3.6$ V, input ac-grounded	No weighting		48		"V
V _n	Output voltage noise	with $C_I = 2uF$, $f=20\sim20kHz$	A weighting		36		uV_{RMS}
CMRR	Common Mode Rejection Ratio	$V_{DD} = 3.6V$, $V_{IC} = 1$ V_{PP} , $f=217Hz$			-70		dB

\Box V_{DD} = 2.8V, R_I = 150k Ω , T_A = 25 , unless otherwise specified.

Symbol	Downwator	Conditions		Spec		
	Parameter	Conditions	Min. Typ. Max.	Units		
		THD+N=10%, f=1KHz, $R_L = 4\Omega$		0.92		
D.	Outmut Bours	THD+N=1%, f=1KHz, $R_L = 4\Omega$		0.75		W
Po	Output Power	$\text{FHD+N=10\%, f=1KHz, R}_{L} = 8\Omega$		0.52		, vv
		THD+N=1%, f=1KHz, $R_L = 8\Omega$		0.41		
THD+N	Total Harmonic	Po=0.2Wrms, f=1kHz, $R_L = 8\Omega$		0.1		%
	Distortion + Noise	$ PO=0.2 \text{ WIIIIS}, 1=1 \text{ KHz}, \text{ K}_{\text{L}} = 852$		0.1		

Test Circuit

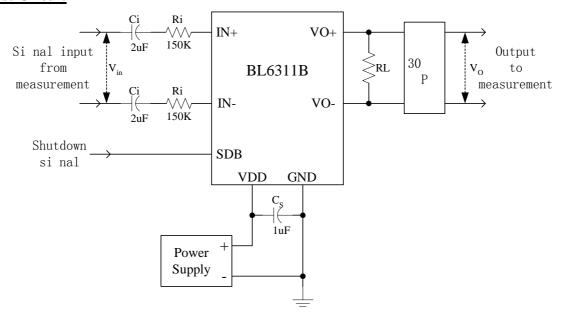


Figure 5. BL6311B test setup circuit

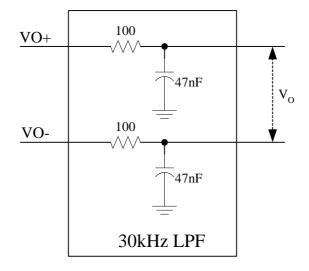


Figure 6. 30-kHz LPF for BL6311B test

Notes: 1>. C_S should be placed as close as possible to VDD/GND pad of the device

- 2>. Ci should be shorted for any Common-Mode input voltage measurement
- 3>. A 33uH inductor should be used in series with R_L for efficiency measurement
- 4>. The 30 kHz LPF (shown in figure 5) is required even if the analyzer has an internal LPF

Component Recommended

Due to the weak noise immunity of the single-ended input application, the differential input application should be used whenever possible. The typical component values are listed in the table:

$R_{\rm I}$	C_{I}	C_{S}
150 k	3.3 nF	2.2 uF

- (1) C_I should have a tolerance of $\pm 10\%$ or better to reduce impedance mismatch.
- (2) Use 1% tolerance resistors or better to keep the performance optimized, and place the R_I close to the device to limit noise injection on the high-impedance nodes.

Input Resistors (R_I) & Capacitors (C_I)

The input resistors (R_I) set the total voltage gain of the amplifier according to Eq1

$$Gain = \frac{2 \times 150k\Omega}{R_I} \quad \left(\frac{V}{V}\right)$$
 Eq1

The input resistor matching directly affects the CMRR, PSRR, and the second harmonic distortion cancellation.

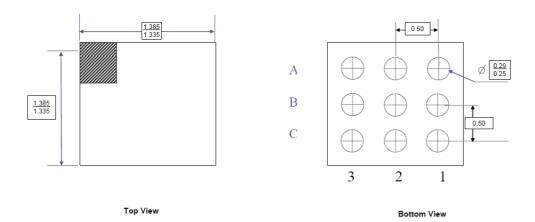
If a differential signal source is used, and the signal is biased from $0.5V \sim V_{DD}$ -0.8V (shown in Figure2), the input capacitor (C_I) is not required.

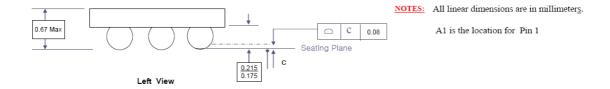
If the input signal is not biased within the recommended common-mode input range in differential input application (shown in Figure 3), or in a single-ended input application (shown in Figure 4), the input coupling capacitors are required.

If the input coupling capacitors are used, the R_I and C_I form a high-pass filter (HPF). The corner frequency (f_C) of the HPF can be calculated by Eq2

$$f_C = \frac{1}{2\pi \cdot R_I \cdot C_I} \quad (Hz)$$
 Eq2

Decoupling Capacitor (C_S)


A good low equivalent-series-resistance (ESR) ceramic capacitor (C_S), used as power supply decoupling capacitor (C_S), is required for high power supply rejection (PSRR), high efficiency and low total harmonic distortion (THD). Typically C_S is 2–2 μ F, placed as close as possible to the device VDD pin.


Order Information

Part Number	Package	Shipping
BL6311B	CSP9	3000 pcs / Tape & Reel

Package Dimensions

