GENERAL DESCRIPTION

The BM9209 is the improvement version of CM2838 in Iq , in dropout , also in PSRR for portable wireless products. BM9209 family is a positive voltage linear regulator developed utilizing CMOS technology featured low quiescent current (5 μ A typ.) and 0.1uA standby current, lowest dropout voltage, and high output voltage accuracy, making them ideal for battery applications. EN input connected to CMOS has low bias current. Integrated current limit and temperature limit protection circuit.

These rugged devices have both Thermal Shutdown, and Current Fold-back to prevent device failure under the "Worst" of operating conditions.

In application requiring a low noise, regulated supply, place a 1000pF capacitor between Bypass and Ground.

The BM9209 is stable with an output capacitance of 1.0 μ F or greater.

FEATURES

- Very Low Dropout Voltage : 160mV @200mA
- Low Current Consumption: 5 μ A
- Output Voltage: 1.8V, 2.5V, 2.8V, 3.0V, 3.3V
- High Accuracy Output Voltage: +/- 1.5%
- Guaranteed 300mA Output
- Input Range up to 7.0V
- Thermal Shutdown and Current Limiting
- Fast enable turn-on time of 20us (typ.)
- Compact Package: SOT-23-5
- Factory Pre-set Output Voltages
- Short Circuit Current Fold-Back
- Low standby(off) current : 0.1uA
- Higher PSRR : 60dB (1KHz)
- Improved from RT9193, CM2838 and RT9167

APPLICATIONS

- PHS , mobile phone
- Wireless lan
- Wireless telephone
- Digital Camera
- Portable GPS
- MP4 , portable DVD

TYPICAL APPLICATIONS

PIN CONFIGURATION

BLOCK DIAGRAM

ORDERING INFORMATION

Part Number	Output Voltage	Temperature Range	Package
BM9209GDIM25	1.8V	-40° ℃ ~ +85 °℃	SOT-23-5
BM9209GKIM25	2.5V	-40° C ∼ +85 °C	SOT-23-5
BM9209GNIM25	2.8V	-40° C ∼ +85° C	SOT-23-5
BM9209GPIM25	3.0V	-40° C ∼ +85° C	SOT-23-5
BM9209GSIM25	3.3V	-40° C ~ +85° C	SOT-23-5

Note: For other pre-set output voltage requirements, please contact Bookly Sales office.

ABSOLUTE MAXIMUM RATINGS

OPERATING RATINGS

Input Voltage		+8.5V
Output Current		P _D / (V _{IN} - Vo) mA
Output Voltage	GND-0).3V to V _{IN} +0.3V
ESD Classificat	tion	В

THERMAL INFORMATION

Parameter		Maximum	Unit	
Thermal Resistance (Θ_{jc})	SOT-23-5	160	°C/W	
Internal Power Dissipation (P_D) ($\Delta T = 100^{\circ}C$)	SOT-23-5	320	°C/W	
Maximum Junction Temperature		150	°C	
Maximum Lead Temperature (10 Sec)		300	°C	

Caution: Stress above the listed absolute rating may cause permanent damage to the device.

ELECTRICAL CHARACTERISTICS

 $T_A = +25^{\circ}C$; unless otherwise noted

Devenuetor	Cumhal	Test Osmalitiens		BM9209			11		
Parameter	Symbol	Test Co	lest Conditions		Min.	Тур.	Max.	Unit	
Input Voltage	V _{IN}			Note 1		8	V		
Output Voltage Accuracy	Vout	I _O =	1mA		-1.5		1.5	%	
	Vdropout	I _O = 300mA, V _{OUT} =V _{O(NOM)} -2%,	1.2\	/ <v<sub>O(NOM)<=2.0V</v<sub>		400			
Dropout Voltage			2.0\	/ <v<sub>O(NOM)<=2.5V</v<sub>		200		mv	
			2	2.5V <v<sub>O(NOM)</v<sub>		150		mV	
Output Current	lo	V _{OUT} > 1.2V		250	300		mA		
Current Limit	I _{LIM}	V _{OUT} :	> 1.2\	/	300	450		mA	
Short Circuit Current	I _{SC}	V _{OUT} <	< 0.95	V		400	450	mA	
Quiescent Current	lq	I _O =	0mA			5	7	μA	
Ground Pin Current	I _{GND}	I _O = 1mA to 400mA			5	7	μA		
Line Regulation	REGLINE	I _{OUT} =5mA, V _{IN} =∖	/ _{OUT} +′	1 to V _{OUT} +2		0.015	0.2	%	
Load Regulation	REGLOAD	I _O =1mA to 400mA			0.2	1.5	%		
Over Temperature Shutdown	OTS				150		°C		
Over Temperature Hysteresis	OTH				30		°C		
VOUT Temperature Coefficient	TC				40		ppm/°C		
	PSRR	I_0 = 100mA C ₀ =2.2 μ F ceramic		f=1kHz		60			
Power Supply Rejection			i.	f=10kHz		55		dB	
			IC	f=100kHz		50			
Power Supply Rejection	PSRR	I _O = 100mA C _O =2.2 μ F cerami		f=1kHz		65		dB	
			ic	f=10kHz		62			
		$C_{\text{BYP}}=0.01\mu\text{F}$		f=100kHz		60			
Output Voltage Noise	eN	f=10Hz to 100kHz		$C_0=2.2\mu$ F		20		LL \/rmc	
		$I_0 = 10 \text{mA}, C_{\text{BYP}} = 0$	μF	$C_0=100\mu$ F		15		μvims	
Output Voltage Noise	eN	f=10Hz to 100kHz	z	$C_0=2.2\mu$ F		17		11)/mm-	
		$I_{O} = 10 \text{mA}, C_{BYP} = 0.01$	ΙμF	$C_0=100\mu$ F		10		μvins	
Shutdown Supply Current	I _{SD}	V_{IN} =5.0V, V_{OUT} =0V, V_{EN} < V_{EL}			0.1	0.3	μA		
EN Input Bias Current	I _{EH}	$V_{EN}=V_{IN}, V_{IN}=2.6V \text{ to } 7V$				0.1	μA		
	IEL	V _{EN} =0, V _{IN} =2.6V to 7V			0.1	0.3	μA		
	V _{EH}	V _{IN} =2.6V to 7V		(Note2)		V _{IN}	V		
EN INPUT I Nresnoid	V _{EL}	V _{IN} =2.6V to 7V		0		0.4	V		

Note 1. $V_{IN(MIN)} = V_{OUT} + V_{DROPOUT}$ Note 2. Based on our design architecture, the enable input threshold will depend on the input voltage. To ensure the stability of your design application, please set the $V_{EH (MIN)} = V_{IN}/2 + 0.8V$.

DETAILED DESCRIPTION

The BM9209 family of CMOS regulators contain a PMOS pass transistor, voltage reference, error amplifier, over-current protection, thermal shutdown, and short circuit protection.

The P-channel pass transistor receives data from the error amplifier, over-current shutdown, short output protection, and thermal protection circuits. During normal operation, the error amplifier compares the output voltage to a precision reference. Over-current and Thermal shutdown circuits become active when the junction temperature exceeds 150° C, or the current exceeds 400mA. During thermal shutdown, the output voltage remains low. Normal operation is restored when the junction temperature drops below 120° C.

The BM9209 switches from voltage mode to current mode when the load exceeds the rated output current. This prevents over-stress. The BM9209 also incorporates current fold-back to reduce power dissipation when the output is short-circuited. This feature becomes active when the output drops below 1.05V, and reduces the current flow by 65%. Full current is restored when the voltage exceeds 0.95V.

ENABLE

The Enable pin normally floats high. When pulled down low voltage, switch off output , the PMOS pass transistor shut off, and all internal circuits are powered down. In this state, the quiescent current is less than 0.1 μ A. This pin behaves much like an electronic switch.

EXTERNAL CAPACITOR

The BM9209 is stable with an output capacitor to ground of $1.0 \,\mu$ F or greater. It can keep stable even with higher or poor ESR capacitors. A second capacitor is recommended between the input and ground to stabilize VIN. The input capacitor should be larger than $0.1 \,\mu$ F to have a beneficial effect. All capacitors should be placed in close proximity to the pins. A "quiet" ground termination is desirable.

TYPICAL ELECTRICAL CHARACTERISTICS

Noise Measurement

Transient Line Response

TIME (20mS/DIV)

BM9209 300mA CMOS LDO WITH ENABLE

 $C_L = 10 \mu F$ Stable Region

150

200

PACKAGE DIMENSION

