EPARED BY :DATE 20.JUN.2007		SPEC NO. EC-06Y04C
4 lochima		FILE NO.
1 J. Alanuma SI	HARP	ISSUE 20.JUN.2007
ECKED BY :DATE 20.JUN.2007		PAGE 1/19
Q. YCRAYAM CHECTRON. SHARP COR	IC COMPONENTS GROUP PORATION	REPRESENTATIVE DIVISION
PROVED BY :DATE 20.JUN.2007		RF DEVICES DIV.
SPEC	CIFICATION	
		<u>.</u>
	SPECIFICATION for DBS TUNER with LINI	X
		~~
MODEL NO.	BS2F7VZ739	db
	en a co com ser a com ser a com	and the serve above as the server and the server as the se
	JUSTOMER'S	APPROVAL
		APPROVAL
	PUBLIS	
FOF (PUELIS JUN-22 SHARP CORPO	-2007
	PUBLIS JUN-22 SHARP CORPO ELECTRONIC CO	-2007 PRATION MPONENTS
FOF (PUELIS JUN-22 SHARP CORPO	-2007 PRATION MPONENTS
CUSTOMER'S APPROVAL	PUBLIS JUN-22 SHARP CORPO ELECTRONIC CO	-2007 PRATION MPONENTS
CUSTOMER'S APPROVAL	PUBLIS JUN-22 SHARP CORFO ELECTRONIC CO ENGINEERING PRESENTED	-2007 PRATION MPONENTS
CUSTOMER'S APPROVAL	PUBLIS JUN-22 SHARP CORFO ELECTRONIC CO ENGINEERING PRESENTED	-2007 PRATION MPONENTS
CUSTOMER'S APPROVAL	PUELIS JUN-22 SHARP CORPO ELECTRONIC CO ENGINEERING PRESENTED BY M.C.	-2007 PRATION MPONENTS
CUSTOMER'S APPROVAL	PUELIS JUN-22 SHARP CORPO ELECTRONIC CO ENGINEERING PRESENTED BY MITSUH DEPARTM	-2007 PRATION MPONENTS DEPT MODENT IRO NOBORU MENT GENERAL MANAGER
CUSTOMER'S APPROVAL	PUBLIS JUN-22 SHARP CORFO ELECTRONIC CO ENGINEERING PRESENTED BY MITSUH DEPARTM ENGINEE RF DEVIC	-2007 PRATION MPONENTS DEPT Mobern IRO NOBORU

DATE 20. Mar. 2007 23. May. 2007 20. Jun. 2007	DS OF REVISIO REF. PAGE PARAGRAPH DRAWING No. P9 6-3 Interface figure P12 8-2 P17 Dimension and	DN REVISED No.	DOC. FIRST ISSUE 17.Nov.2006 IDENT. DATA No. SUMMARY Add the description of IC's marking. Postscript to title.	CHECK & APPROVAL Y. Ieshima A. Yokoyama H. Ogino M. Noboru
DATE 20. Mar. 2007 23. May. 2007 20. Jun. 2007	REF. PAGE PARAGRAPH DRAWING No. P9 6-3 Interface figure P12 8-2	REVISED No.	SUMMARY Add the description of IC's marking. Postscript to title.	& APPROVAL Y. Ieshima A. Yokoyama H. Ogino M. Noboru
20. Mar. 2007 23. May. 2007 20. Jun. 2007	PARAGRAPH DRAWING No. P9 6-3 Interface figure P12 8-2	No.	Add the description of IC's marking. Postscript to title.	& APPROVAL Y. Ieshima A. Yokoyama H. Ogino M. Noboru
23. May. 2007 20. Jun. 2007	Interface figure P12 8-2	-	Postscript to title.	A.Yokoyama H.Ogino M.Noboru
20. Jun. 2007		Δ		X7 T 1 *
	P17 Dimonstan and		Describe clearly the PLL setting condition; "at every tuning".	H.Ogino
	mounting details		Add a screw hole(no tap) between RF in and out. History of aleteration(6th of Lot.No) is changed from "A" to "B". Apply after July 2007.	Y - Leshima A. 400 M. Nobor
			·	

SHARP PROPRIETARY

	MODEL No. BS2F7VZ7395	SPEC №. EC-06Y04C	PAGE 3/19
SHARP	D0211121000		0/10
[DESCRIPTION] This specification covers I Satellites. This tuner incorporates "LINF demodulation circuit and FEC (Forwar transport stream output.	K" section that is compo	osed of DVB star	ndard QPSK
[1] GENERAL SPECIFICATIONS			
	50MHz to 2150MHz		
1	35dBm to -25dBm		
-	type Female 5 ohm		
1 1	5 onm LL synthesizer(Clock 4.(MH_{7}	
0	00kHz	///////////////////////////////////////	
1-7 I/Q output LPF cut off frequency(-3dB			
	0MHz to 30MHz, variabl	e (2MHz step)	
	Msps to 45Msps		
	5% (root-raised cosine)	,	
	TV0288 (Clock: 4MHz, A		
	iterbi soft decoder, Cons	-	1
	unctured codes 1/2, 2/3, 3 utomatic or manual rate		nition
	einterleaver	and Thase recog	minion
W	Vord synchro extraction		
	onvolutive deinterleaver		
	eed-solomon decoder, for	: 16 parity bytes	
	lock lengths 204byte	1.1	
	nergy dispersal descram).30 to +4.00V DC	bler	
e a a).30 to +3.63V DC		
	0.30 to +4.00V DC		
(VDD) -C	0.25 to +2.75V DC		
1-13 Operating voltage			
e e e e e e e e e e e e e e e e e e e	5V, 400mA max		
	.3V +/- 0.165V DC		
	.3V +/- 0.165V DC .3V +/- 0.165V DC		
	.5V +/- 0.125V DC		
	ig.1		
÷	ig.2		
	5g		
1-17 Storage condition			
-	5 deg.C to 35 deg.C		
c c	5 %RH to 75 %RH months		
	oHS compliant		
(RoHS refers to the "DIREC	-	E EUROPEAN PA	ARLIAMENT
AND OF THE COUNCIL of			use of certain
hazardous substances in elect	trical and electronic equip	ment.")	
1-19 Attention items:			lestere statio
1) This unit contains c discharge. Before handling	omponents that can be this unit ground your		
and equipment to protect the			TAILLY UCSES
2) Avoid following actions			
	in the place of the high t	cemperature and	humidity.
b)to expose this un	it to corrosive gases.		

]	BS2F7V	Z7395	EC	-06Y04C	4/1
HA	RP							
[2] MI	ECHANICAL SPE	CIFICATION						
2-1	Dimension and		ils Fig	3				
2-2	Strength of F-co		-		ransform	n or distor	rtion at bend	ing mom
				J∙cm. To				8
2-3	Clamp Torque o	f F-connector					ortion on th	e connect
	1 1						noment, 98N	
				be connec			,	
[3] EN	IVIRONMENTAL	SPECIFICAT	ION					
						L OPER	ATION GUA	RANTEE
3-1. 0	perating	Temperatur		+60 deg				
		Humidity	Les	s than 85	5%			
3-2. S	torage	Temperatur	e -20	to +85 de	eg. C			
	-	Humidity		s than 95	5%			
[D;	int to notice] Wate	W MODON DROGGL	ro 6649D	o mov s	aandan	sation		
[[[0]		er vapor pressu se be careful that					v causo condu	ongotion
		ig storage, and		-		<u> </u>		.115at1011
	duin	ig storage, and	Such con	actisatio	ii iiiay ca		51011.	
[4] TE	STING CONDIT	[ON						
	Supply voltage	(B2	3.3	V +/- 0.05	δV			
	110 0	(D)	33	V +/- 0.05	W			
		(B3	0.0	v 17 0.00	, v			
		(B3 (B4		V +/- 0.05 V +/- 0.05				
		(B4	4) 3.3		δV			
	Ambient tempera	(B4 (VI	4) 3.3 DD) 2.5	V +/- 0.05 V +/- 0.05	SV SV			
4-2.	Ambient tempera Ambient humidit	(B4 (VI ature	4) 3.3 DD) 2.5 25 (V +/- 0.05	5V 5V 5 deg. C			
4-2. 4-3.	Ambient humidit	(B4 (VI ature yy	4) 3.3 DD) 2.5 25 6 65%	V +/- 0.05 V +/- 0.05 deg. C +/- 6 +/- 10%	SV SV 5 deg. C			
4-2. 4-3. [5]EL]	Ambient humidit	(B4 (VI ature yy	4) 3.3 DD) 2.5 25 6 65%	V +/- 0.05 V +/- 0.05 deg. C +/- 6 +/- 10% ess othery	SV SV 5 deg. C wise state		g condition 4-	
4-2. 4-3.	Ambient humidit	(B4 (VI ature yy	4) 3.3 DD) 2.5 25 6 65% (Unle	V +/- 0.05 V +/- 0.05 deg. C +/- % +/- 10% ess otherv Specifi	V 5 deg. C vise state cation	ed testing	g condition 4-	
4-2. 4-3. [5]EL No.	Ambient humidit	(B4 (VI ature yy	4) 3.3 DD) 2.5 25 6 65%	V +/- 0.05 V +/- 0.05 deg. C +/- 6 +/- 10% ess otherv Specifi TYP.	V 5 deg. C vise state cation MAX.		Condi	tion
4-2. 4-3. [5]EL. No. 5-1	Ambient humidit ECTRICAL SPEC Item RF input VSWR	(B4 (VI ature y CIFICATION	4) 3.3 DD) 2.5 25 6 65% (Unle	V +/- 0.05 V +/- 0.05 deg. C +/- 6 +/- 10% ess otherw Specifi TYP. 2.0	V 5 deg. C vise state cation MAX. 2.5	ed testing	Condit 950M to 215	tion 50MHz
4-2. 4-3. [5]EL No. 5-1 5-2	Ambient humidit ECTRICAL SPEC Item RF input VSWR Noise figure(at n	(B4 (VI ature y <u>ZIFICATION</u> nax. gain)	4) 3.3 DD) 2.5 25 6 65% (Unle MIN.	V +/- 0.05 V +/- 0.05 deg. C +/- % +/- 10% ess otherv Specifi TYP. 2.0 8	V 5 deg. C vise state cation MAX.	ed testing UNIT dB	Condit 950M to 218 950M to 218	tion 50MHz 50MHz
4-2. 4-3. [5]EL. No. 5-1	Ambient humidit ECTRICAL SPEC Item RF input VSWR Noise figure(at n Intermodulation	(B4 (VI ature by 2IFICATION nax. gain) rejection	4) 3.3 DD) 2.5 25 6 65% (Unle	V +/- 0.05 V +/- 0.05 deg. C +/- 6 +/- 10% ess otherw Specifi TYP. 2.0	V 5 deg. C vise state cation MAX. 2.5	ed testing	Condit 950M to 218 950M to 218 Input level:	tion 50MHz 50MHz -25dBm
4-2. 4-3. [5]EL No. 5-1 5-2	Ambient humidit ECTRICAL SPEC Item RF input VSWR Noise figure(at n Intermodulation Desired signal I	(B4 (VI ature by 2IFICATION hax. gain) rejection Fo	4) 3.3 DD) 2.5 25 6 65% (Unle MIN.	V +/- 0.05 V +/- 0.05 deg. C +/- % +/- 10% ess otherv Specifi TYP. 2.0 8	V 5 deg. C vise state cation MAX. 2.5	ed testing UNIT dB	Condit 950M to 218 950M to 218 Input level: I/Q output 1	tion 50MHz 50MHz -25dBm evel:
4-2. 4-3. [5]EL No. 5-1 5-2	Ambient humidit ECTRICAL SPEC Item RF input VSWR Noise figure(at m Intermodulation Desired signal I Undesired signal	(B4 (VI ature by CIFICATION nax. gain) rejection Fo al (2 signals)	4) 3.3 DD) 2.5 25 6 65% (Unle MIN.	V +/- 0.05 V +/- 0.05 deg. C +/- % +/- 10% ess otherv Specifi TYP. 2.0 8	V 5 deg. C vise state cation MAX. 2.5	ed testing UNIT dB	Condit 950M to 218 950M to 218 Input level:	tion 50MHz 50MHz -25dBm evel:
4-2. 4-3. [5]EL No. 5-1 5-2	Ambient humidit ECTRICAL SPEC Item RF input VSWR Noise figure(at m Intermodulation Desired signal I Undesired signal (Fo+29.5MHz,	(B4 (VI ature by 2IFICATION nax. gain) rejection Fo al (2 signals) Fo+59MHz) or	4) 3.3 DD) 2.5 25 6 65% (Unle MIN.	V +/- 0.05 V +/- 0.05 deg. C +/- % +/- 10% ess otherv Specifi TYP. 2.0 8	V 5 deg. C vise state cation MAX. 2.5	ed testing UNIT dB	Condit 950M to 218 950M to 218 Input level: I/Q output 1 0.6V _P -p(1kol	tion 50MHz 50MHz -25dBm evel: hm load)
4-2. 4-3. [5]EL No. 5-1 5-2 5-3	Ambient humidit ECTRICAL SPEC Item RF input VSWR Noise figure(at n Intermodulation Desired signal I Undesired signal (Fo+29.5MHz, (Fo-29.5MHz,	(B4 (VI ature yy <u>2IFICATION</u> nax. gain) rejection Fo al (2 signals) Fo+59MHz) or Fo-59MHz)	4) 3.3 DD) 2.5 25 6 65% (Unle MIN.	V +/- 0.05 V +/- 0.05 deg. C +/- 6 +/- 10% ess othery Specifi TYP. 2.0 8 60	V 5 deg. C vise state cation MAX. 2.5 12	ed testing UNIT dB dB	Condit 950M to 218 950M to 218 Input level: I/Q output 1 0.6VP-P(1kol BBLPF:Fc=	tion 50MHz 50MHz -25dBm evel: hm load) 20MHz
4-2. 4-3. [5]EL. No. 5-1 5-2 5-3 5-3	Ambient humidit ECTRICAL SPEC Item RF input VSWR Noise figure(at n Intermodulation Desired signal I Undesired signal (Fo+29.5MHz, (Fo-29.5MHz, L.O. leak at inpu	(B4 (VI ature by 2IFICATION nax. gain) rejection Fo al (2 signals) Fo+59MHz) or Fo-59MHz) t terminal	4) 3.3 DD) 2.5 25 6 65% (Unle MIN.	V +/- 0.05 V +/- 0.05 deg. C +/- 6 +/- 10% ess otherw Specifi TYP. 2.0 8 60 -68	V V 5 deg. C vise state cation MAX. 2.5 12 -63	ed testing UNIT dB dB dB	Condit 950M to 218 950M to 218 1nput level: I/Q output 1 0.6V _P -P(1kol BBLPF:Fc= 950M to 218	tion 50MHz 50MHz -25dBm evel: nm load) 20MHz 50MHz
4-2. 4-3. [5]EL No. 5-1 5-2 5-3	Ambient humidit ECTRICAL SPEC Item RF input VSWR Noise figure(at m Intermodulation Desired signal I Undesired signal (Fo+29.5MHz, (Fo-29.5MHz, L.O. leak at inpu Eb/No	(B4 (VI ature by CIFICATION max. gain) rejection Fo al (2 signals) Fo+59MHz) or Fo-59MHz) t terminal PC= 1/2	4) 3.3 DD) 2.5 25 6 65% (Unle MIN.	V +/- 0.05 V +/- 0.05 deg. C +/- 6 +/- 10% ess otherv Specifi TYP. 2.0 8 60 -68 3.7	V 5 deg. C vise state cation MAX. 2.5 12 -63 4.5	ed testing UNIT dB dB	Condit 950M to 218 950M to 218 1nput level: I/Q output 1 0.6VP-P(1kol BBLPF:Fc= 950M to 218 4 <fs<45[ms< td=""><td>tion 50MHz 50MHz -25dBm evel: hm load) 20MHz 50MHz sps]</td></fs<45[ms<>	tion 50MHz 50MHz -25dBm evel: hm load) 20MHz 50MHz sps]
4-2. 4-3. [5]EL. No. 5-1 5-2 5-3 5-3	Ambient humidit ECTRICAL SPEC Item RF input VSWR Noise figure(at m Intermodulation Desired signal I Undesired signal (Fo+29.5MHz, (Fo-29.5MHz, L.O. leak at input Eb/No for BER = 2e-4	(B4) (VI ature y) CIFICATION max. gain) rejection Fo al (2 signals) Fo+59MHz) or Fo-59MHz) t terminal PC= 1/2 PC= 2/3	4) 3.3 DD) 2.5 25 6 65% (Unle MIN.	V +/- 0.05 V +/- 0.05 deg. C +/- 6 +/- 10% ess otherv Specifi TYP. 2.0 8 60 -68 3.7 4.2	V 5 deg. C vise state cation MAX. 2.5 12 -63 4.5 5.0	ed testing UNIT dB dB dB	Condit 950M to 218 950M to 218 1nput level: I/Q output 1 0.6V _P -P(1kol BBLPF:Fc= 950M to 218	tion 50MHz 50MHz -25dBm evel: hm load) 20MHz 50MHz sps]
4-2. 4-3. [5]EL. No. 5-1 5-2 5-3 5-3	Ambient humidit ECTRICAL SPEC Item RF input VSWR Noise figure(at m Intermodulation Desired signal I Undesired signal (Fo+29.5MHz, (Fo-29.5MHz, L.O. leak at inpu Eb/No	(B4) (VI) ature (VI) $($	4) 3.3 DD) 2.5 25 6 65% (Unle MIN.	V +/- 0.05 V +/- 0.05 deg. C +/- 6 +/- 10% ess otherv Specifi TYP. 2.0 8 60 -68 3.7 4.2 4.7	V 5 deg. C vise state cation MAX. 2.5 12 -63 4.5 5.0 5.5	ed testing UNIT dB dB dB	Condit 950M to 218 950M to 218 1nput level: I/Q output 1 0.6VP-P(1kol BBLPF:Fc= 950M to 218 4 <fs<45[ms< td=""><td>tion 50MHz 50MHz -25dBm evel: hm load) 20MHz 50MHz sps]</td></fs<45[ms<>	tion 50MHz 50MHz -25dBm evel: hm load) 20MHz 50MHz sps]
4-2. 4-3. [5]EL. No. 5-1 5-2 5-3 5-3	Ambient humidit ECTRICAL SPEC Item RF input VSWR Noise figure(at m Intermodulation Desired signal I Undesired signal (Fo+29.5MHz, (Fo-29.5MHz, L.O. leak at input Eb/No for BER = 2e-4	(B4) (VI) ature (VI) $($	4) 3.3 DD) 2.5 25 6 65% (Unle MIN.	V +/- 0.05 $V +/- 0.05$ $deg. C +/-$ $6 +/- 10%$ $ess otherw$ $Specifi$ $TYP.$ 2.0 8 60 -68 3.7 4.2 4.7 5.3	V 5 deg. C vise state cation MAX. 2.5 12 -63 4.5 5.0 5.5 6.0	ed testing UNIT dB dB dB	Condit 950M to 218 950M to 218 1nput level: I/Q output 1 0.6VP-P(1kol BBLPF:Fc= 950M to 218 4 <fs<45[ms< td=""><td>tion 50MHz 50MHz -25dBm evel: hm load) 20MHz 50MHz sps]</td></fs<45[ms<>	tion 50MHz 50MHz -25dBm evel: hm load) 20MHz 50MHz sps]
4-2. 4-3. [5]EL. No. 5-1 5-2 5-3 5-3	Ambient humidit ECTRICAL SPEC Item RF input VSWR Noise figure(at m Intermodulation Desired signal I Undesired signal (Fo+29.5MHz, (Fo-29.5MHz, L.O. leak at input Eb/No for BER = 2e-4	(B4) (VI) ature (VI) $($	4) 3.3 DD) 2.5 25 6 65% (Unle MIN.	V +/- 0.05 $V +/- 0.05$ $deg. C +/-$ $6 +/- 10%$ $ess otherverses othervers$	V V 5 deg. C vise state cation MAX. 2.5 12 -63 4.5 5.0 5.5 6.0 6.4	ed testing UNIT dB dB dB dB dB dB	Condit 950M to 218 950M to 218 Input level: I/Q output 1 0.6VP-P(1kol BBLPF:Fc= 950M to 218 4 <fs<45[ms (Fs :symb</fs<45[ms 	tion 50MHz 50MHz -25dBm evel: hm load) 20MHz 50MHz sps] ol rate)
4-2. 4-3. [5]EL. No. 5-1 5-2 5-3 5-3	Ambient humidit ECTRICAL SPEC Item RF input VSWR Noise figure(at m Intermodulation Desired signal I Undesired signal (Fo+29.5MHz, (Fo-29.5MHz, L.O. leak at input Eb/No for BER = 2e-4	(B4) (VI) ature (VI) $($	4) 3.3 DD) 2.5 25 6 65% (Unle MIN.	V +/- 0.05 $V +/- 0.05$ $deg. C +/-$ $6 +/- 10%$ $ess otherw$ $Specifi$ $TYP.$ 2.0 8 60 -68 3.7 4.2 4.7 5.3 5.7 4.8	V V 5 deg. C vise state cation MAX. 2.5 12 -63 4.5 5.0 5.5 6.0 6.4 5.5	ed testing UNIT dB dB dB	Condit 950M to 218 950M to 218 1nput level: I/Q output 1 0.6VP-P(1kol BBLPF:Fc= 950M to 218 4 <fs<45[ms< td=""><td>tion 50MHz 50MHz -25dBm evel: hm load) 20MHz 50MHz sps] ol rate)</td></fs<45[ms<>	tion 50MHz 50MHz -25dBm evel: hm load) 20MHz 50MHz sps] ol rate)
4-2. 4-3. [5]EL. No. 5-1 5-2 5-3 5-3	Ambient humidit ECTRICAL SPEC Item RF input VSWR Noise figure(at m Intermodulation Desired signal I Undesired signal (Fo+29.5MHz, (Fo-29.5MHz, L.O. leak at input Eb/No for BER = 2e-4	(B4) (VI) ature (VI) ature (VI) (VI) (VI)	4) 3.3 DD) 2.5 25 6 65% (Unle MIN.	V +/- 0.05 $V +/- 0.05$ $deg. C +/-$ $6 +/- 10%$ $ess otherw$ $Specifi$ $TYP.$ 2.0 8 60 -68 3.7 4.2 4.7 5.3 5.7 4.8 5.0	V V 5 deg. C vise state cation MAX. 2.5 12 -63 4.5 5.0 5.5 6.0 6.4 5.5 6.0	ed testing UNIT dB dB dB dB dB dB	Condit 950M to 218 950M to 218 Input level: I/Q output 1 0.6VP-P(1kol BBLPF:Fc= 950M to 218 4 <fs<45[ms (Fs :symb</fs<45[ms 	tion 50MHz 50MHz -25dBm evel: hm load) 20MHz 50MHz sps] ol rate)
4-2. 4-3. [5]EL. No. 5-1 5-2 5-3 5-3	Ambient humidit ECTRICAL SPEC Item RF input VSWR Noise figure(at m Intermodulation Desired signal I Undesired signal (Fo+29.5MHz, (Fo-29.5MHz, L.O. leak at input Eb/No for BER = 2e-4	(B4) (VI) ature (VI) $($	4) 3.3 DD) 2.5 25 6 65% (Unle MIN.	V + - 0.05 $V + - 0.05$ $deg. C +$	V V 5 deg. C vise state cation MAX. 2.5 12 -63 4.5 5.0 5.5 6.0 6.4 5.5 6.0 6.4 5.5 6.0 6.5	ed testing UNIT dB dB dB dB dB dB	Condit 950M to 218 950M to 218 Input level: I/Q output 1 0.6VP-P(1kol BBLPF:Fc= 950M to 218 4 <fs<45[ms (Fs :symb</fs<45[ms 	tion 50MHz 50MHz -25dBm evel: hm load) 20MHz 50MHz sps] ol rate)
4-2. 4-3. [5]EL. No. 5-1 5-2 5-3 5-3	Ambient humidit ECTRICAL SPEC Item RF input VSWR Noise figure(at m Intermodulation Desired signal I Undesired signal (Fo+29.5MHz, (Fo-29.5MHz, L.O. leak at input Eb/No for BER = 2e-4	(B4) (VI) ature (VI) $(VI) = (VI) = (VI)$	4) 3.3 DD) 2.5 25 6 65% (Unle MIN.	V +/- 0.05 $V +/- 0.05$ $deg. C +/-$ $6 +/- 10%$ $ess otherw$ $Specifi$ $TYP.$ 2.0 8 60 -68 3.7 4.2 4.7 5.3 5.7 4.8 5.0	V V 5 deg. C vise state cation MAX. 2.5 12 -63 4.5 5.0 5.5 6.0 6.4 5.5 6.0 6.5 7.0	ed testing UNIT dB dB dB dB dB dB	Condit 950M to 218 950M to 218 Input level: I/Q output 1 0.6VP-P(1kol BBLPF:Fc= 950M to 218 4 <fs<45[ms (Fs :symb</fs<45[ms 	tion 50MHz 50MHz -25dBm evel: hm load) 20MHz 50MHz sps] ol rate)
4-2. 4-3. [5]EL. No. 5-1 5-2 5-3 5-3	Ambient humidit ECTRICAL SPEC Item RF input VSWR Noise figure(at n Intermodulation Desired signal I Undesired signa (Fo+29.5MHz, (Fo-29.5MHz, Eb/No for BER = 2e-4 @viterbi_out	(B4) (VI) ature (VI) (VI)	4) 3.3 DD) 2.5 25 6 65% (Unle MIN.	V + - 0.05 $V + - 0.05$ $deg. C +$	V V 5 deg. C vise state cation MAX. 2.5 12 -63 4.5 5.0 5.5 6.0 6.4 5.5 6.0 6.4 5.5 6.0 6.5	ed testing UNIT dB dB dB dB dB dB	Condit 950M to 218 950M to 218 Input level: I/Q output 1 0.6VP-P(1kol BBLPF:Fc= 950M to 218 4 <fs<45[ms (Fs :symb</fs<45[ms 	tion 50MHz 50MHz -25dBm evel: hm load) 20MHz 50MHz sps] ol rate)
4-2. 4-3. [5]EL No. 5-1 5-2 5-3 5-3 5-4 5-5	Ambient humidit ECTRICAL SPEC Item RF input VSWR Noise figure(at m Intermodulation Desired signal I Undesired signal (Fo+29.5MHz, (Fo-29.5MHz,) L.O. leak at input Eb/No for BER = 2e-4 @viterbi_out	(B4) (VI) ature (VI) $(VI) = (VI) = (VI)$	4) 3.3 DD) 2.5 25 6 65% (Unle MIN.	V + - 0.05 $V + - 0.05$ $deg. C +$	V V 5 deg. C vise state cation MAX. 2.5 12 -63 4.5 5.0 5.5 6.0 6.4 5.5 6.0 6.4 5.5 6.0 6.5 7.0 7.4 50	ed testing UNIT dB dB dB dB dB dB	Condit 950M to 218 950M to 218 Input level: I/Q output 1 0.6VP-P(1kol BBLPF:Fc= 950M to 218 4 <fs<45[ms (Fs :symb 2<fs<4[ms< td=""><td>tion 50MHz 50MHz -25dBm evel: hm load) 20MHz 50MHz sps] ol rate) sps]</td></fs<4[ms<></fs<45[ms 	tion 50MHz 50MHz -25dBm evel: hm load) 20MHz 50MHz sps] ol rate) sps]
4-2. 4-3. [5]EL No. 5-1 5-2 5-3 5-3	Ambient humidit ECTRICAL SPEC Item RF input VSWR Noise figure(at n Intermodulation Desired signal I Undesired signa (Fo+29.5MHz, (Fo-29.5MHz, Eb/No for BER = 2e-4 @viterbi_out	(B4) (VI) ature (VI) $(VI) = (VI) = (VI)$	4) 3.3 DD) 2.5 25 6 65% (Unle MIN.	V +/- 0.05 $V +/- 0.05$ $deg. C +/-$ $6 +/- 10%$ $ess otherw$ $Specifi$ $TYP.$ 2.0 8 60 -68 3.7 4.2 4.7 5.3 5.7 4.8 5.0 5.5 6.2 6.8	V V 5 deg. C vise state cation MAX. 2.5 12 -63 4.5 5.0 5.5 6.0 6.4 5.5 6.0 6.4 5.5 6.0 6.5 7.0 7.4	ed testing UNIT dB dB dB dB dB dB	Condit 950M to 218 950M to 218 Input level: I/Q output 1 0.6VP-P(1kol BBLPF:Fc= 950M to 218 4 <fs<45[ms (Fs :symb</fs<45[ms 	tion 50MHz 50MHz -25dBm evel: hm load) 20MHz 50MHz sps] ol rate) sps] et

MODEL No.

SPEC No.

PAGE

MODEL No.	SPEC No.	PAGE
BS2F7VZ7395	EC-06Y04C	5/19

5-8	PLL reference lea		-40	-30	dBc	500kHz	
5-9	RF output VSWR			2.0	2.5		950M to 2150MHz
5-10	RF output gain		-5	0	+5	dB	measured at RF out
5-11	Current	B2		90	135	mA	B2=3.3V
	consumption	B3		34	112	mA	B3=3.3V
		B4		25	40	mA	B4=3.3V
		VDD		61	180	mA	VDD=2.5V

[6] PLL FUNCTION DESCRIPTION

PLL and VCO are promptly set up without fail when the user correctly program the data with the prompt I²C access sequence as long as the following are also applied;

a) Follow the I²C standard specification

b) Leave RTS to 0

6-1. I²C-BUS DATA FORMATS

Table 1; Write data format (MSB is transmitted first)

* A

MSB					LSB				
1	1	0	0	0	0(MA1)	0(MA0)	0	А	Byte1
0	BG1	BG0	N8	N7	N6	N5	N4	А	Byte2
N3	N2	N1	A5	A4	A3	A2	A1	А	Byte3
1	1(C1)	1(C0)	PD5	PD4	TM	0(RTS)	1(REF)	А	Byte4
BA2	BA1	BA0	PSC	PD3	PD2/TS2	DIV/TS1	PD0/TS0	А	Byte5

; Acknowledge bit

= =	/	
* N8 to N1	; Programmable division ratio control bits	(see Table 3)
* A5 to A1	; Swallow division ratio setting bits	(see Table 4)
* REF	; Reference division ratio setting bits	(see Table 5)
* PSC	; Prescaler division ratio setting bits	(see Table 6)
* MA1, MA0	; Address setting bits	(see Table 7)
* PD0	; PO control bit	(see Table 8)
* BA2, BA1, BA0	; Local oscillator select	(see Table 9)
* DIV	; Local oscillator divided ratio setting	(see Table 9)
* PD5 to PD2	; BB LPF cut-off frequency setting	(see Table 10)
* RTS	; Test mode control bit	(see Table 11)
* TS2, TS1, TS0	; Test mode setting bits (when RTS = '1')	(see Table 11)
* C1, C0	; Charge pump current setting bits	(see Table 12)
* BG1, BG0	; BB AMP gain setting bits	(see Table 13)
* TM	; VCO/LPF adjustment mode setting bits	(see section [8])

Write PLL register data to set one among the following I²C access sequence as #a) to h). It is available to skip the bytes which does not require for renewal or change the sequence of the bytes to choose one of the following.

I²C start->1st byte->2nd byte->3rd byte->4th byte->5th byte

byte1: I²C address byte

a) I²C start -> byte1 -> byte2 -> byte3 -> byte4 -> byte5 * b) I²C start -> byte1 -> byte4 -> byte5 -> byte2 -> byte3 *

c) I^2C start -> byte1 -> byte2 -> byte3 -> byte4 -> either I^2C stop or (another) start

d) I²C start -> byte1 -> byte4 -> byte5 -> byte2 -> either I²C stop or (another) start

e) I²C start -> byte1 -> byte2 -> byte3 -> either I²C stop or (another) start

f) I²C start -> byte1 -> byte4 -> byte5 -> either I²C stop or (another) start

g) I²C start -> byte1 -> byte2 -> either I²C stop or (another) start

h) I²C start -> byte1 -> byte4 -> either I²C stop or (another) start

*: Either I²C stop or (another) start is available to follow after the 5th byte, but not mandatory

(Caution): During receiving signals, don't access I²C bus to satisfy the phase noise character specification.

	MODEL No. BS2F7VZ7395	SPEC No. EC-06Y04C	PAGE 6/19
SHARP			
(Note): PLL set up rules	 .1		

The following conditions are required to program the $\mathrm{I}^{2}\mathrm{C}$ access sequence.

According to a required renewal data on each byte, one of the access sequence shown above as a) to h) should be chosen.

- 1) Write byte1 on the $1^{\rm st}$ byte after I^2C start.
- 2) Write either byte2 or byte4 on the 2nd byte.
 When the MSB header is 0 on the 2nd byte, the 2nd byte is recognized as byte2.
 When the MSB header is 1 on the 2nd byte, the 2nd byte is recognized as byte4.
- 3) The following byte after byte2 or byte4 should be the sequent # of the last byte as; The byte3 should be followed after byte2.
 - The byte5 should be followed after byte4.
- 4) The number of byte to write in one access sequence as from a start to a stop (or another start) state should be two bytes at least. Review #g) and #h).
- Maximum bytes are five as write all byte1 to byte5 data in one access sequence. Review #a) and #b)
- 5) The renewal of the register data is only available when it becomes an I²C stop or another start state after all the bytes to write in case of #c) to h).

Only in the case when the renewal of the register data all from byte2 to byte5 in one access sequence as #a) and #b), a stop state or another start state is not mandatory required for data renewal.

- 6) The data already registered and not to write for renewal has kept as it is as the last state.
- 7) Every time when the power is on, write all the register data on byte2 to byte5 in one sequence for the purpose of the initial default set up to follow either #a) or #b). Because the initial values on byte2 to byte5 are not fixed before the initialization.

Table 2; Read data format

	MSB							LSB		
	1	1	0	0	0	MA1	MA0	1	А	Byte1
	POR	FL	RD2	RD1	RD0	Х	Х	Х	А	Byte2
	* POR ; Power on reset indicator							(s	ee table i	14)
	* FL	FL ; Phase lock detect flag						(see table 15)		
* RD2 – RD0 ; Reserved (These bit values change u					ge under the condition of ICs.)					

* X ; don't care

* All data of byte2 will be "H", when "Power on reset" operates

* "Read mode" will change to "Write mode" after completing to output the byte2.

6-2. PROGRAMING

6-2-1 Programmable divider bits data Please set P, N, A, R as follows.

fvco=[(P*N)+A]*fosc/R

fvco	Receiving frequency
Р	: Dividing factor of prescaler (16 or 32)
Ν	: Programmable division ratio (5 to 255)
А	: Swallow division ratio (0 to 31 and A < N)
fosc	: Reference oscillation frequency (4 MHz)
R	: Reference division ratio (see table 5)

MODEL No.	SPEC No.	PAGE
BS2F7VZ7395	EC-06Y04C	7/19

6-2-2 Data setting

Table 3; Programmable division ratio control (Binary: 8 bits)

Dividing		Bit data						
factor (N)	N8	N7	N6	N5	N4	N3	N2	N1
5	0	0	0	0	0	1	0	1
6	0	0	0	0	0	1	1	0
•	•	•	•	•	•	•	•	•
255	1	1	1	1	1	1	1	1

Table 4; Swallow division ratio setting (Binary: 5 bits)

Dividing		Е	Bit dat	a	
factor (A)	A5	A4	A3	A2	A1
0	0	0	0	0	0
1	0	0	0	0	1
•	•	•	•	•	•
31	1	1	1	1	1

* The using of 4 or smaller dividing factors is inhibited.

* The dividing factor is set by the data of N8 to N1 and A5 to A1 in byte2, 3 on I²C write data.

Table 5; Reference division ratio setting (Binary: 1 bit)

REF	Dividing factor (R)	Compare frequency	fvco(MHz)	
0	4	1 MHz	1024 - 2150 MHz*	Caution:
1	8	$500 \mathrm{~kHz}$	$950-2150~\mathrm{MHz}$	Only use REF=1

*When the reference division ratio set to 4(REF = '0'), the fvco's minimum frequency must be higher than 1024 MHz (including 1024 MHz). If the frequency is lower than 1023 MHz, the condition mentioned in section 6-2-1 "A < N" is not satisfied.

But all receiving ranges can be covered with combination with PSC setting. (see Table 6)

Table 6; Prescaler division ratio setting (Binary: 1 bit)

PSC	Dividing factor (P)	fvco	The dividing factor is set by the
0	32	950 - 2150 MHz	data of PSC in byte 5 on I ² C
1	16	950 - 1375 MHz*	write data.

*When the prescaler division ratio of the prescaler is set to 16(PSC = '1'), the fvco's maximum frequency must be lower than 1375 MHz (including 1375 MHz). This fvco's maximum frequency limitation is depended on the operation frequency of the internal programmable counter. Refer to Table 9 about PSC detailed setting.

Table 7; Address selection (Binary: 2 bits)

В	lit	
MA1	MA0	ADR input voltage
0	0	0V to 0.1*B2
0	1	open
1	0	0.4*B2 to 0.6 *B2
1	1	0.9*B2 to B2

 \ast The address of this tuner is C0(h).

Table 8; PO control (Binary: 1 bit)

Bit	Output of PO					
PD0	Normal	Power on reset	Power on			
1	L	Hi-Z	Hi-Z			
0	Hi-Z	Hi-Z				

Hi-Z: High impedance

MODEL No.	SPEC No.	PAGE
BS2F7VZ7395	EC-06Y04C	8/19

Table 9; Local oscillator select

					Local frequency	Divider
BAND	DIV	BA2	BA1	BA0	(Receiving frquency)	ratio
1	1	1	1	0	950MHz to 1065MHz	1/4
2	1	1	1	1	1065MHz to 1170MHz	1/4
3	0	0	0	1	1170MHz to 1300MHz	1/2
4	0	0	1	0	1300MHz to 1445MHz	1/2
5	0	0	1	1	$1445 \mathrm{MHz}$ to $1607 \mathrm{MHz}$	1/2
6	0	1	0	0	1607MHz to 1778MHz	1/2
7	0	1	0	1	1778MHz to 1942MHz	1/2
8	0	1	1	0	1942MHz to 2150MHz	1/2

Table10; Baseband LPF cut-off frequency setting

PD2	PD3	PD4	PD5	LPF cut-off Frequency
0	0	1	1	10 MHz
0	1	0	0	$12 \mathrm{~MHz}$
0	1	0	1	$14 \mathrm{~MHz}$
0	1	1	0	$16 \mathrm{~MHz}$
0	1	1	1	18 MHz
1	0	0	0	$20~\mathrm{MHz}$
1	0	0	1	$22~\mathrm{MHz}$
1	0	1	0	$24~\mathrm{MHz}$
1	0	1	1	26 MHz
1	1	0	0	28 MHz
1	1	0	1	30 MHz

Table 11; Test mode setting

	Register Bit			t	Testmode	
R'	ГS	TS2	TS1	TS0	Test mode	
()	Х	Х	Х	Normal operation	
]	L	Don't use		se	Reserved (Test Mode)	

X: don't care

* When RTS=1 on "I²C write data (table 1)", it changes to test mode.

Table 12; Charge pump output current selection

В	it	Charge p	pump output current [µA]		
C1	CO	min typ		max	
0	0	± 78	± 120	± 150	
0	1	± 169	± 260	± 325	
1	0	± 360	± 555	± 694	
1	1	± 780	± 1200	± 1500	

MODEL No.	SPEC No.	PAGE
BS2F7VZ7395	EC-06Y04C	9/19

Table 13; Baseband AMP gain control (Depend on PLL register setting)

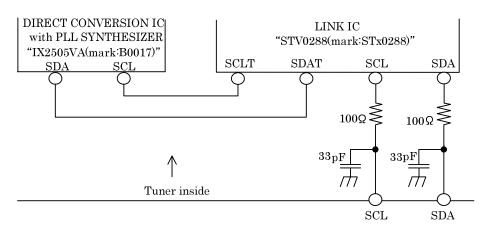
BG1	BG0	ATTENUATION (Typ.)
0	0/1	0
1	0	-2 dB
1	1	-4 dB

Table 14; POR bit polarity

	VCC3 > 2.2V	$\rm VCC3 < 2.2V$
POR bit	L	Н
CDA has to ha	. 11. 1	

Table 15; FL bit polarity

	lock	unlock
FL bit	Н	L


* SDA has to be pulled up.

6-3. INTERFACE CIRCUITS

Table 16; Internal interface of I²C bus

Tuner pin No.	${ m I^2C}~{ m port}$	Note
8	SDA	Refer to following figure
9	SCL	

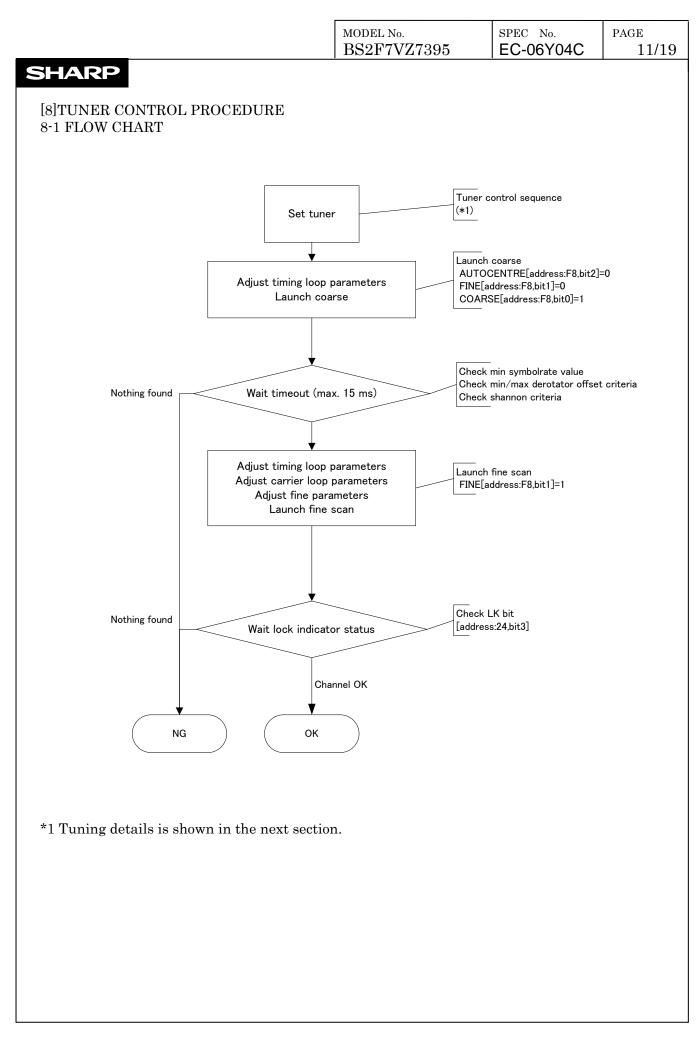
 \triangle

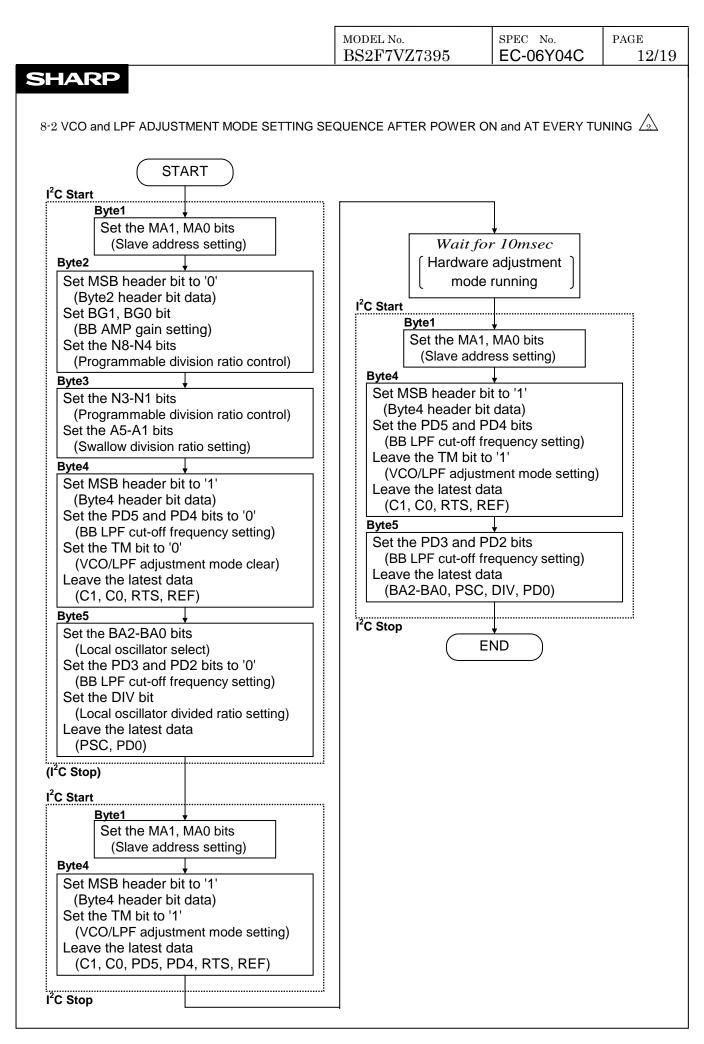
MODEL No. SPEC No. PAGE BS2F7VZ7395 EC-06Y04C

10/19

SHARP

[7] CONFIGURATION REGISTERS Table 17; STV0288's Test Register Value


address [H]	data [H] 27.5Msps	data [H] 5Msps	address [H]	data [H] 27.5Msps	data [H] 5Msps	address [H]	data [H] 27.5Msps	data [H] 5Msps
00	n/a	n/a	30	00	00	64	n/a	n/a
01	15	15	31	1E	1E	65	n/a	n/a
02	20	20	32	14	14	66	n/a	n/a
03	8E	8E	33	0F	0F	67	n/a	n/a
04	8E	8E	34	09	09	68	n/a	n/a
05	12	12	35	0C	0C	69	n/a	n/a
06	00	00	36	05	05	6A	n/a	n/a
07	n/a	n/a	37	2F	2F	6B	n/a	n/a
08	n/a	n/a	38	16	16	6C	n/a	n/a
09	00	00	39	BD	BD	70	00	00
0A	04	04	3A	00	00	71	00	00
0B	00	00	3B	13	13	72	00	00
0C	00	00	3C	11	11	74	00	00
0D	00	00	3D	30	30	75	00	00
0E	C4	C4	3E	n/a	n/a	76	00	00
0F	54	54	3F	n/a	n/a	81	00	00
10	n/a	n/a	40	63	63	82	3F	3F
11	7A	7A	41	04	04	83	3F	3F
12	03	03	42	60	60	84	00	00
13	48	48	43	00	00	85	00	00
14	84	84	44	00	00	88	00	00
15	45	45	45	00	00	89	00	00
16	B7	B7	46	00	00	8A	00	00
17	9C	9C	47	00	00	8B	00	00
18	00	00	4A	00	00	8C	00	00
19	A6	A6	4B	n/a	n/a	90	00	00
1A	88	88	4C	n/a	n/a	91	00	00
1B	8F	8F	50	10	10	92	00	00
1C	F0	F0	51	38	38	93	00	00
1E	n/a	n/a	52	21	21	94	1C	1C
1F	n/a	n/a	53	A2	86	97	00	00
20	0B	0B	54	D9	56	A0	48	48
21	54	54	55	23	06	A1	00	00
22	00	00	56	8D	76	B0	B8	B8
23	00	00	57	1B	05	B1	3A	3A
24	n/a	n/a	58	54	54	B2	10	10
25	n/a	n/a	59	86	86	B3	82	82
26	n/a	n/a	5A	00	00	B4	80	80
27	n/a	n/a	5B	9B	9B	B5	82	82
28	46	0C	5C	08	08	B6	82	82
29	65	CC	$5\mathrm{D}$	7F	7F	B7	82	82
2A	E0	B0	5E	00	00	B8	20	20
2B	FF	FF	5F	FF	FF	B9	00	00
2C	F7	F7	60	n/a	n/a	F0	00	00
2D	n/a	n/a	61	n/a	n/a	F1	00	00
2E	n/a	n/a	62	n/a	n/a	F2	CO	CO
2F	n/a	n/a	63	n/a	n/a			


<note>

The data field with "n/a "stands for "read only register". No need to write, no malady with writing.
 Some register bit should be swiched "1" and "0", duaring the signal search. Ex) I²C bus repeater [address:01/bit7]: OFF=0/ON=1

(3) symbol_frequency: SFRH,M,L[address:28,29,2A] = symbol_frequency / $F_{M_{CLK}}$ [100MHz] x 2²⁰ (4) $F_{M_{CLK}}$:

(#fxtal = 4MHz, PLL_SELRATIO[address:41,bit2])

		MODEL No. BS2F7VZ7395	SPEC No. EC-06Y04C	PAGE 13/19
SHARP		·	·	
1) After value 2) After leave	mperature high humidity load (40 · leaving DUT at room temperatu	ure and humidity for 24h amber at 40deg.C/90-95% ad humidity for 2h and the	RH in on state, f	or total 500h

- 1) After leaving DUT at room temperature and humidity for 24h or longer, measure the initial value.
- 2) After leaving DUT in the constant chamber at 70+/-2deg.C/40% RH for total 500h, leave the DUT at room temperature and humidity for 2h and then measure value after test.
- 3) Must meet the specifications of Table 19.

9-3. Cold test (-25deg.C, 500h)

- 1) After leaving DUT at room temperature and humidity for 24h or longer, measure the initial value.
- 2) After leaving DUT in the constant temperature chamber at -25deg.C for 500h, leave the DUT at room temperature and humidity for 2h and then measure the values after test.
- 3) Must meet the specifications of Table 19.

9-4. Shock (686 m/s², 6 planes, 3 times)

- 1) After leaving DUT at room temperature and humidity for 24h or longer, measure the initial values.
- 2) Using the shock tester, apply shock of 686 m/s² three times to each of 6 planes and then measure the values.
- 3) Must meet the specifications of Table 19.
- 4) This test is to be conducted using a single tuner.
- 9-5. Vibration (10-55 Hz, 1.5 mm, in each of three mutually perpendicular directions, each 2 times)
 - 1) After leaving DUT at room temperature and humidity for 24h or longer, measure the initial values.
 - 2) Using the vibration tester, apply motion having an amplitude of 1.5 mm (constant), the frequency being varied uniformly between 10 and 55 Hz, to DUT, for 2h in each of three mutually perpendicular directions (X, Y and Z, total of 6h). After the test, measure the values.
 - 3) Must meet the specifications of Table 19.
 - 4) This test is to be conducted using a single tuner.

9-6. Heat shock test (1 cycle=1h (-20deg.C; 0.5h, 70deg.C; 0.5h), 50 cycles))

- 1) After leaving DUT at room temperature and humidity for 24h or longer, measure the initial value.
- 2) Using the heat shock tester, apply heat shock to DUT. After the test, measure the values.
- 3) Must meet the specifications of Table 19.
- 4) The contact resistance of F-connector must be less than 0.02 ohm. (*)
- 9-7. Solderability of terminal

Pretreatment of heating terminal at 150deg.C for 1h is performed and leave it at room temperature for 2h or longer. Immerse 1.9 mm length of terminal (from the tip) to be soldered into rosin

(JIS-K-5902), isopropyl alcohol (JIS-K-8839 or JIS-K-1522, rosin concentration (10-35% range) approx. 25% by weight unless otherwise specified) or equivalent solution for 3–5s, and then immerse the length of the terminal into a pool of molten solder (Sn/3.0Ag/0.5Cu, or equivalent) at 240 +/-2deg.C for 3s.Dipped terminal portion shall be wetted by more than 95%. (Excluding the cutting plane of the chassis)

|--|

9-8. Soldering heat resistance

Immerse the terminal mounted on a PCB (1.6t thick) into solder at 350 ± 5 deg.C for 3.0-3.5 seconds or at 260 ± -5 deg.C for 10 ± -1 seconds. Remove the PCB from the solder and leave it for 1 hour at room temperature. The test sample shall show no degradation in appearance and electrical characteristics.

9-9. ESD protection

Table 18; ESD Test Condition (IEC61000-4-2 Compliant)

terminal	Limits	condition
RF_IN (coaxial center)	+/-6kV DC	Air discharge 150pF/330ohm, each 5 times
Others	+/-200V DC	Contact discharge 150pF/330ohm, each 5 times

Table 19

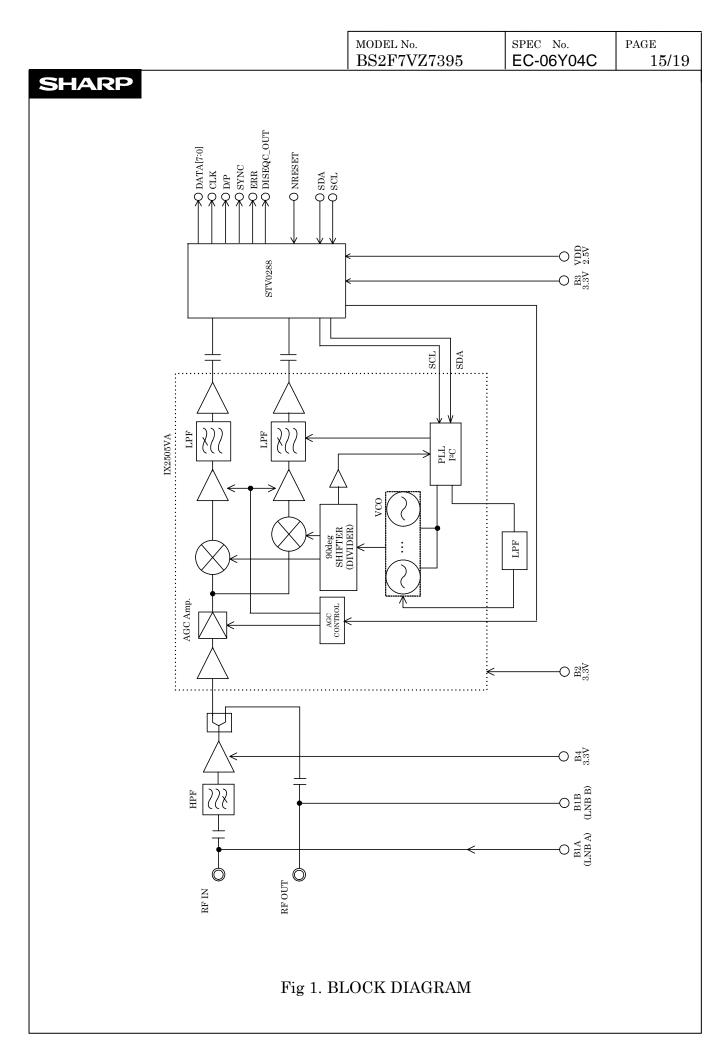
	item	specification	condition
Eb/	No	(initial values)+/-1dB	BER = 2e-4 at viterbi output PC=3/4

(*)Method of measuring contact resistance

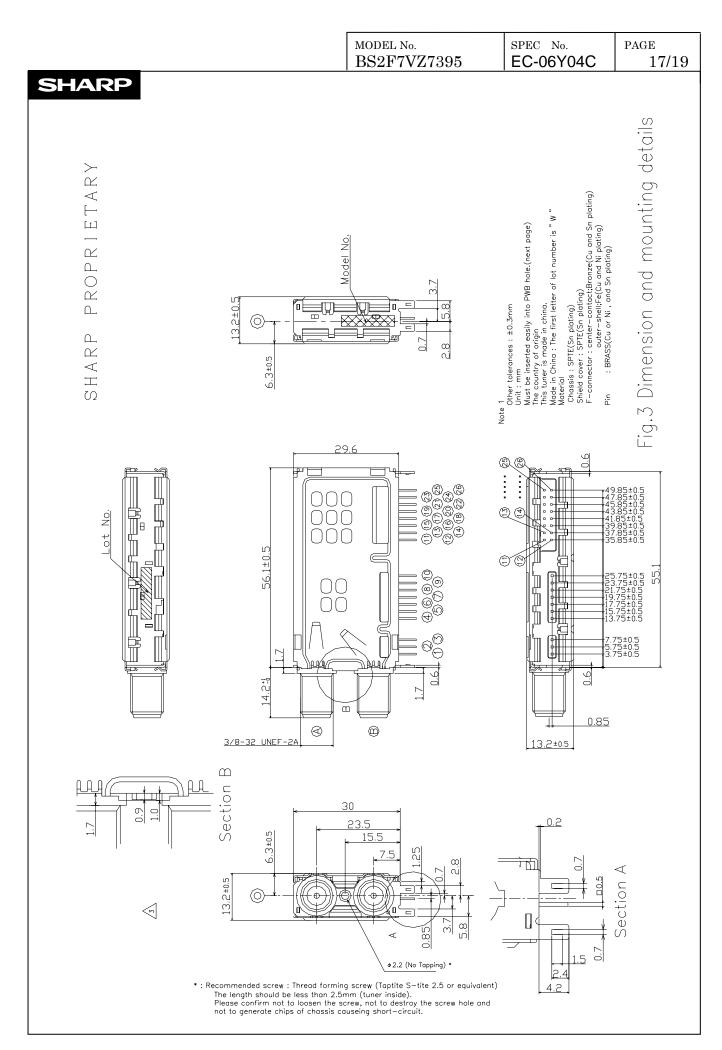
 $Center\mbox{-}contact$

Insert the gauge pin(ϕ 0.8mm) to F-connector.

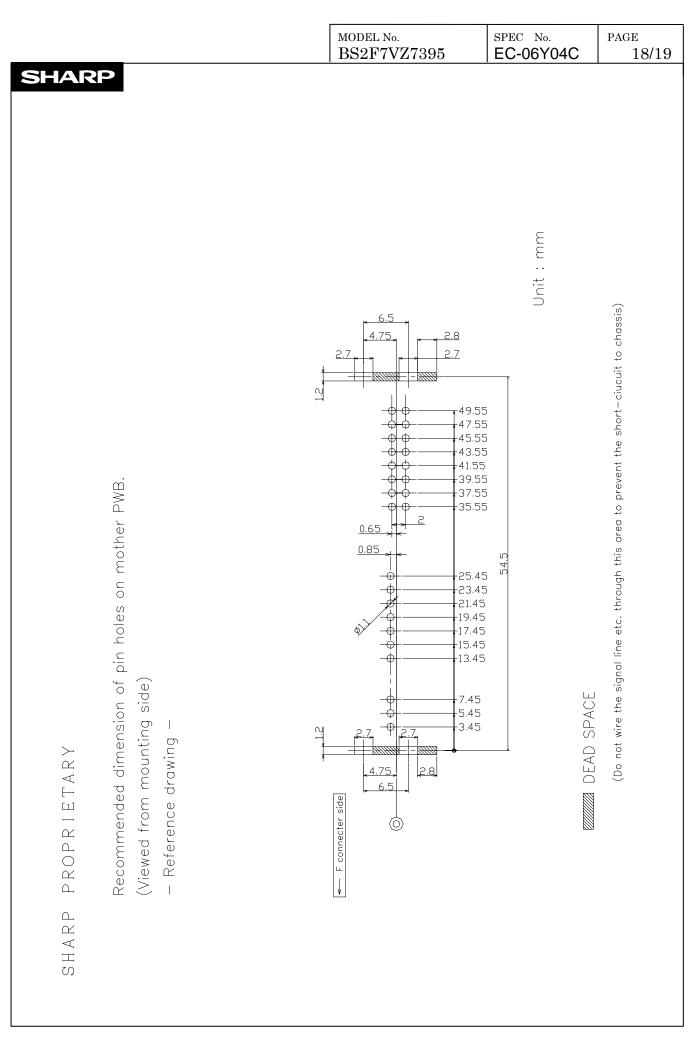
Measure the resistance between the gauge and the center-contact of F-connector. Outer-shell

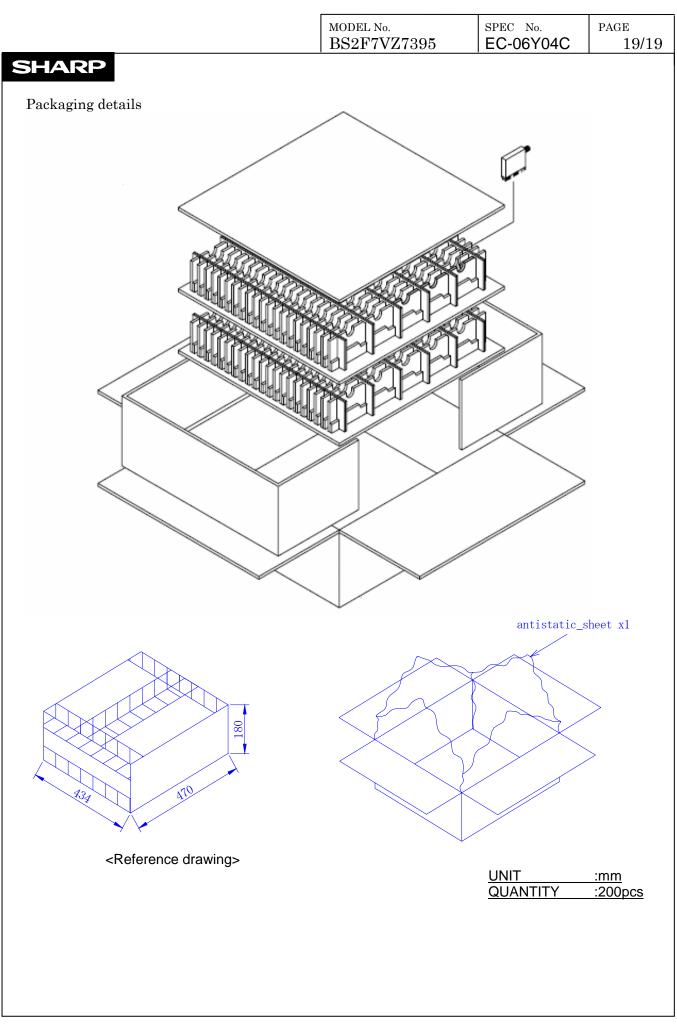

Connect the plug(3/8-32 UNEF-2B) to F-connector at $29.4N \cdot cm$ of the clamping torque. Measure the resistance between the plug and chassis.

(Measuring device: Milliohm meter)


• F-connector is made from iron. If the plating is peeled off, rust might occur to surface of F-connector. But it makes no influence of electric specifications, under contact resistance is less than 0.02 ohm.

•The cutting plane of chassis and shield cover is not plated, therefore rust might occur.


But it makes no influence of electric specifications.



			${ m MODEL \ No.}\ { m BS2F7VZ7395}$	SPEC No. EC-06Y04C	PAGE 16/
			D62F7VZ7595	20-001040	10/
HARP					
RF IN					
А			Ţ		
RF OUT			33 DISEQC_OUT VDD DATA_0 DATA_1	2 6 4 6 9 1-	E
	B1B B1A B4	B2 NNC NNC SDA SCL NC	B3 DISEQC DATA_0 DATA_1	DATA_2 DATA_3 DATA_4 DATA_5 DATA_6 DATA_6 DATA_7 CLK CLK SYNC	ERR NRESET
В	ааа	a z z z w w z	8 C > C C		ΞZ
	03 57	4 7 6 7 4	$\begin{array}{c} 111\\15\\15\end{array}$	$\begin{array}{c} 16 \\ 17 \\ 17 \\ 22 \\ 22 \\ 23 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24$	266
<u>F.</u>	_ <u>_</u> _	•			
H I				2.2k	
=			•		√ →
				\square	te ک
	г			\bigvee	reset
	3.3V	\geq^1	3.3V		
	+			290 290 4	÷
	'				
				\sim	
	_	↓ ↓		-	
			<u> </u>		ALLEL DATA SPORT STREAM
	-	sba ▲	<u> </u>		
	4		$\downarrow \downarrow \downarrow \downarrow \downarrow$		
	4		$\downarrow \downarrow \downarrow \downarrow \downarrow$		
PIN LIST		Fig 2. CON			
PIN NAME	PIN No.	Fig 2. CO	ON	RAM	SPORT STREAM
	PIN No.	Fig 2. CON		RAM	SPORT STREAM
PIN NAME		Fig 2. CON PIN DESCRIPTI Voltage supply of capacitor.	ON	RAM nd it with a 1000pF	sport stream
PIN NAME B1B	1 2	Fig 2. CON Fig 2. CON Voltage supply of capacitor. Voltage supply of capacitor.	ON f LNB B. Please grour f LNB A. Please grour	RAM nd it with a 1000pF nd it with a 1000pF	sport stream
PIN NAME B1B B1A B4	1 2 3	Fig 2. CON Fig 2. CON PIN DESCRIPTI Voltage supply of capacitor. Voltage supply of capacitor. 3.3V supply for H	ON f LNB B. Please grour f LNB A. Please grour RF Booster Amp of tune	RAM nd it with a 1000pF nd it with a 1000pF er.	ceramic ceramic
PIN NAME B1B B1A	1 2	Fig 2. CON PIN DESCRIPTI Voltage supply of capacitor. Voltage supply of capacitor. 3.3V supply for F 3.3V supply for F	ON f LNB B. Please grour f LNB A. Please grour RF Booster Amp of tune the RF section. Please	RAM nd it with a 1000pF nd it with a 1000pF er.	ceramic ceramic
PIN NAME B1B B1A B4 B2	1 2 3 4	Fig 2. CON Fig 2. CON PIN DESCRIPTI Voltage supply of capacitor. Voltage supply of capacitor. 3.3V supply for H 3.3V supply for H Supply less than	ON f LNB B. Please grour f LNB A. Please grour RF Booster Amp of tune the RF section. Please 10mVp-p.	RAM nd it with a 1000pF nd it with a 1000pF er. keep a ripple at the	ceramic ceramic
PIN NAME B1B B1A B4 B2 NC	1 2 3 4 5,6,7,10	Fig 2. CON Fig 2. CON PIN DESCRIPTI Voltage supply of capacitor. Voltage supply of capacitor. 3.3V supply for H 3.3V supply for H 3.3V supply less than It is not connected	ON f LNB B. Please grour f LNB A. Please grour RF Booster Amp of tune the RF section. Please 10mVp-p. ed inside the unit. We a	RAM ad it with a 1000pF ad it with a 1000pF er. keep a ripple at the advice to ground it.	ceramic ceramic ceramic
PIN NAME B1B B1A B4 B2 NC SDA	1 2 3 4 5,6,7,10 8	Fig 2. CON Fig 2. CON PIN DESCRIPTI Voltage supply of capacitor. Voltage supply of capacitor. 3.3V supply for H 3.3V supply for H 3.3V supply less than It is not connected I ² C bus. Please	ON f LNB B. Please grour f LNB A. Please grour RF Booster Amp of tune the RF section. Please 10mVp-p. ed inside the unit. We a connect a pull-up resis	RAM ad it with a 1000pF ad it with a 1000pF er. keep a ripple at the advice to ground it.	ceramic ceramic ceramic
PIN NAME B1B B1A B4 B2 NC	1 2 3 4 5,6,7,10	Fig 2. CON Fig 2. CON Voltage supply of capacitor. Voltage supply of capacitor. 3.3V supply for H 3.3V supply for H 3.3V supply for H Supply less than It is not connected I ² C bus. Please ohm outside of th	ON f LNB B. Please grour f LNB A. Please grour RF Booster Amp of tune the RF section. Please 10mVp-p. ed inside the unit. We a connect a pull-up resis	RAM ad it with a 1000pF ad it with a 1000pF er. keep a ripple at the advice to ground it.	ceramic ceramic ceramic
PIN NAME B1B B1A B4 B2 NC SDA SCL	1 2 3 4 5,6,7,10 8 9	Fig 2. CON Fig 2. CON PIN DESCRIPTI Voltage supply of capacitor. Voltage supply of capacitor. 3.3V supply for H 3.3V supply for H 3.3V supply less than It is not connected I ² C bus. Please	ON f LNB B. Please grour f LNB A. Please grour RF Booster Amp of tune the RF section. Please 10mVp-p. ed inside the unit. We a connect a pull-up resis the tuner. TV0288	RAM ad it with a 1000pF ad it with a 1000pF er. keep a ripple at the advice to ground it.	ceramic ceramic ceramic
PIN NAME B1B B1A B4 B2 NC SDA SCL B3 DISEQC_OUT VDD	1 2 3 4 5,6,7,10 8 9 11 12 13	Fig 2. CON Fig 2. CON Voltage supply of capacitor. Voltage supply of capacitor. 3.3V supply for H 3.3V supply for H 3.3V supply for H Supply less than It is not connected I ² C bus. Please ohm outside of th 3.3V supply for S	ON f LNB B. Please grour f LNB A. Please grour RF Booster Amp of tune the RF section. Please 10mVp-p. ed inside the unit. We a connect a pull-up resis the tuner. TV0288 LNB	RAM ad it with a 1000pF ad it with a 1000pF er. keep a ripple at the advice to ground it.	ceramic ceramic ceramic
PIN NAME B1B B1A B4 B2 NC SDA SCL B3 DISEQC_OUT	1 2 3 4 5,6,7,10 8 9 11 12	Fig 2. CON Fig 2. CON Voltage supply of capacitor. Voltage supply of capacitor. 3.3V supply for H 3.3V supply for H 3.3V supply for H Supply less than It is not connected I ² C bus. Please ohm outside of th 3.3V supply for S Pulse output for 2.5V supply for S	ON f LNB B. Please grour f LNB A. Please grour RF Booster Amp of tune the RF section. Please 10mVp-p. ed inside the unit. We a connect a pull-up resis the tuner. TV0288 LNB	RAM ad it with a 1000pF ad it with a 1000pF er. keep a ripple at the advice to ground it.	ceramic ceramic ceramic
PIN NAME B1B B1A B4 B2 NC SDA SCL B3 DISEQC_OUT VDD	1 2 3 4 5,6,7,10 8 9 11 12 13	Fig 2. CON Fig 2. CON Voltage supply of capacitor. Voltage supply of capacitor. 3.3V supply for H 3.3V supply for H 3.3V supply for H Supply less than It is not connected I ² C bus. Please ohm outside of th 3.3V supply for S Pulse output for 2.5V supply for S	ON f LNB B. Please grour f LNB A. Please grour f LNB A. Please grour the RF section. Please 10mVp-p. ed inside the unit. We a connect a pull-up resist the tuner. TV0288 LNB TV0288 h (TS) parallel data	RAM ad it with a 1000pF ad it with a 1000pF er. keep a ripple at the advice to ground it.	ceramic ceramic e Power
PIN NAME B1B B1A B4 B2 NC SDA SCL B3 DISEQC_OUT VDD DATA[7:0] CLK D/P	1 2 3 4 5,6,7,10 8 9 11 12 13 14,,21	Fig 2. CON Fig 2. CON Voltage supply of capacitor. Voltage supply of capacitor. 3.3V supply for H 3.3V supply for F Supply less than It is not connected I ² C bus. Please ohm outside of th 3.3V supply for S Pulse output for 2.5V supply for S Transport stream Transport stream	ON f LNB B. Please grour f LNB A. Please grour f LNB A. Please grour the RF section. Please 10mVp-p. ed inside the unit. We a connect a pull-up resist the tuner. TV0288 LNB TV0288 h (TS) parallel data	RAM ad it with a 1000pF ad it with a 1000pF er. keep a ripple at the advice to ground it.	ceramic ceramic e Power
PIN NAME B1B B1A B4 B2 NC SDA SCL B3 DISEQC_OUT VDD DATA[7:0] CLK	1 2 3 4 5,6,7,10 8 9 11 12 13 14,,21 22	Fig 2. CON Fig 2. CON Voltage supply of capacitor. Voltage supply of capacitor. 3.3V supply for H 3.3V supply for F Supply less than It is not connected I ² C bus. Please ohm outside of th 3.3V supply for S Pulse output for 2.5V supply for S Transport stream Transport stream	ON f LNB B. Please grour f LNB A. Please grour f LNB A. Please grour RF Booster Amp of tune the RF section. Please 10mVp-p. ed inside the unit. We a connect a pull-up resis the tuner. STV0288 LNB STV0288 h (TS) parallel data n byte clock. n data valid signal	RAM ad it with a 1000pF ad it with a 1000pF er. keep a ripple at the advice to ground it.	ceramic ceramic e Power
PIN NAME B1B B1A B4 B2 NC SDA SCL B3 DISEQC_OUT VDD DATA[7:0] CLK D/P	1 2 3 4 5,6,7,10 8 9 11 12 13 14,,21 22 23	Fig 2. CON Fig 2. CON Voltage supply of capacitor. Voltage supply of capacitor. 3.3V supply for H 3.3V supply for H 3.3V supply for S Supply less than It is not connected I ² C bus. Please ohm outside of th 3.3V supply for S Pulse output for 2.5V supply for S Transport stream Transport stream Transport stream	ON f LNB B. Please grour f LNB A. Please grour f LNB A. Please grour RF Booster Amp of tune the RF section. Please 10mVp-p. ed inside the unit. We a connect a pull-up resist to tuner. TV0288 LNB TV0288 LNB TV0288 a (TS) parallel data a byte clock. a data valid signal a sync bit a packet error signal	RAM ad it with a 1000pF ad it with a 1000pF er. keep a ripple at the advice to ground it.	ceramic ceramic e Power

SHARP PROPRIETARY

