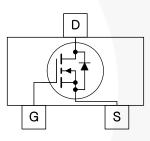


December 2015

BSS123W N-Channel Logic Level Enhancement Mode Field Effect Transistor


Features

- 0.17 A, 100 V, $R_{DS(ON)} = 6 \Omega$ at $V_{GS} = 10 V$ $R_{DS(ON)} = 10 \Omega$ at $V_{GS} = 4.5 V$
- High Density Cell Design for Low R_{DS(ON)}
- Rugged and Reliable
- Ultra Small Surface Mount Package
- Very Low Capacitance
- · Fast Switching Speed
- · Lead Free / RoHS Compliant

Description

This N-channel enhancement mode field effect transistor is produced using high cell density, trench MOSFET technology. This product minimizes on-state resistance while providing rugged, reliable and fast switching performance. This product is particularly suited for low-voltage, low-current applications such as small servo motor control, power MOSFET gate drivers, logic level transistor, high speed line drivers, power management/power supply and switching applications.

Ordering Information

Part Number	Marking	Package	Packing Method
BSS123W	SA	SOT-323 3L	Tape and Reel

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	Parameter		Value	Unit	
V _{DSS}	Drain-Source Voltage		100	V	
V _{DGR}	Drain-Gate Voltage R _{GS} ≤ 20 kΩ		100	V	
V _{GSS}	Gate-Source Voltage		±20	V	
I _D Drair	Drain Current	Continuous	0.17	A	
		Pulsed	0.68		
T _J , T _{STG}	Operating and Storage Temperatur	e Range	-55 to +150	°C	

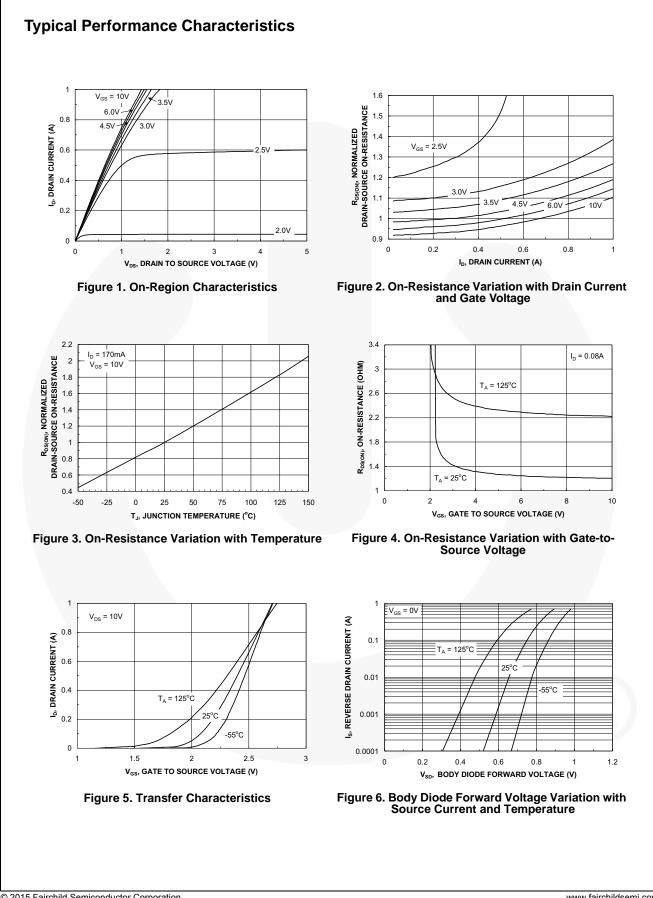
Thermal Characteristics

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Value	Unit
р	Total Power Dissipation	200	mW
P _D	Derate Above 25°C	1.6	mW/°C
R _{θJA}	Thermal Resistance, Junction-to-Ambient ⁽¹⁾	625	°C/W

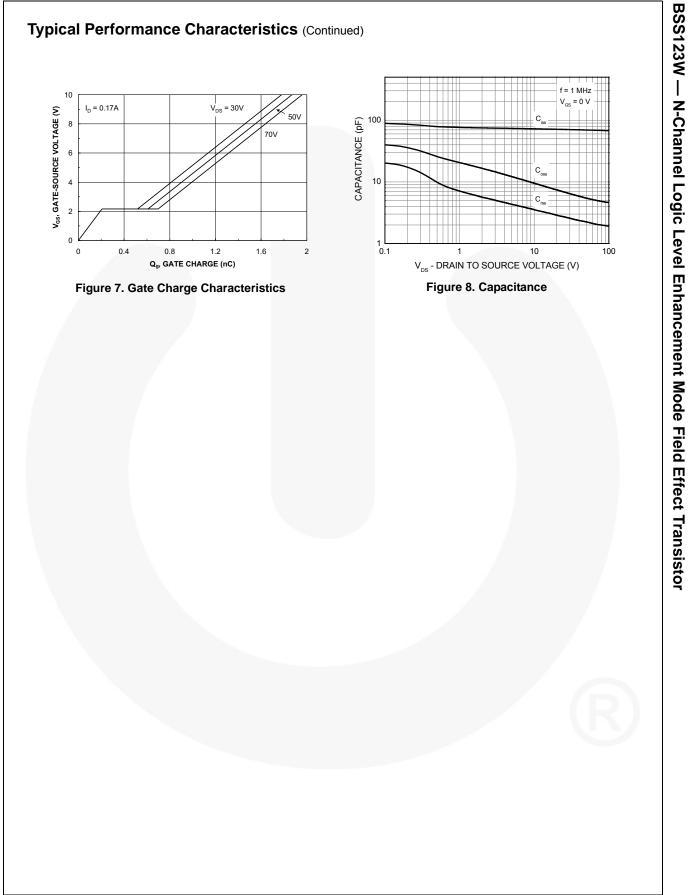
Note:

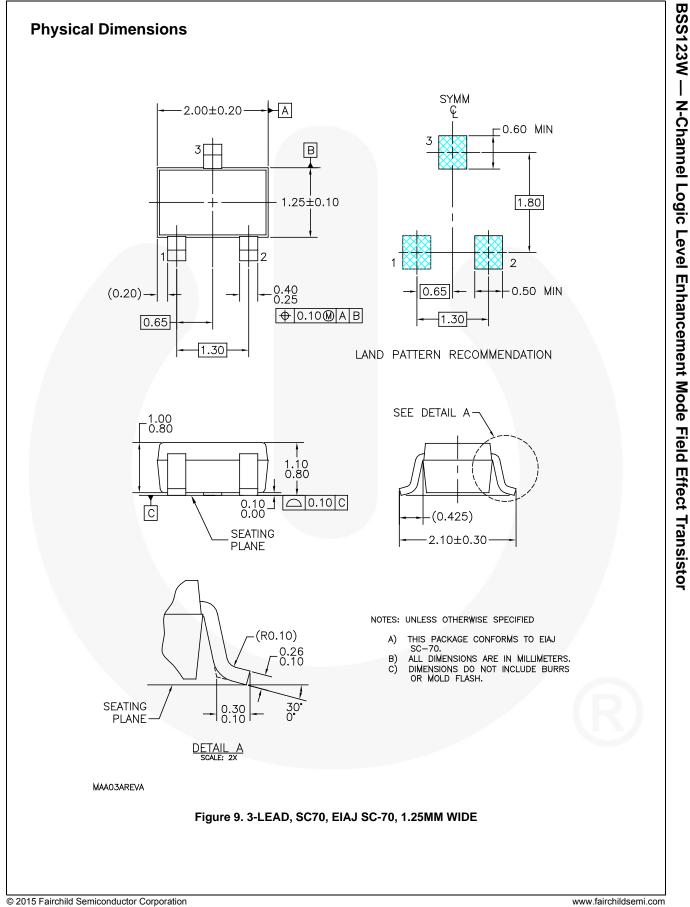
1. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch. Minimum land pad size.


Electrical Characteristics

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

	_					
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Off Charac	teristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I _D = 250 µA	100			V
	Zero Gate Voltage Drain Current	V_{DS} = 100 V, V_{GS} = 0 V			1	μA
IDSS	Zero Gale Vollage Drain Current	V_{DS} = 20 V, V_{GS} = 0 V			10	nA
I _{GSSF}	Gate-Body Leakage, Forward	V _{GS} = 20 V, V _{DS} = 0 V			50	nA
I _{GSSR}	Gate-Body Leakage, Reverse	V_{GS} = -20 V, V_{DS} = 0 V			-50	nA
On Charac	teristics ⁽²⁾					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 1 \text{ mA}$	0.8	1.7	2.0	V
	Statia Drain Source On Desistance	V _{GS} = 10 V, I _D = 0.17 A		1.39	6	Ω
	Static Drain-Source On-Resistance	V _{GS} = 4.5 V, I _D = 0.17 A		1.48	10	
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 0.17 A	80			mS
V_{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 0.34 A		0.81	1.30	V
Dynamic C	haracteristics					
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		71		pF
C _{oss}	Output Capacitance			6.6		pF
C _{rss}	Reverse Transfer Capacitance			2.74		pF
Switching	Characteristics ⁽²⁾					•
t _r	Turn-On Rise Time			1.24	8	ns
t _f	Turn-Off Fall Time	V _{DD} = 30 V, I _D = 0.28 A, V _{GS} = 10 V, R _{GEN} = 6 Ω		5.73	16	ns
t _{d(on)}	Turn-On Delay			2.94	8	ns
t _{d(off)}	Turn-Off Delay			8.4	13	ns


Note:


2. Pulse test: pulse width \leq 300 µs, duty cycle \leq 2.0%.

BSS123W — N-Channel Logic Level Enhancement Mode Field Effect Transistor

© 2015 Fairchild Semiconductor Corporation BSS123W Rev. 1.0

FAIRCHILD. TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. F-PFS™ **OPTOPLANAR[®]** AccuPower™ AttitudeEngine™ **FRFET**[®] Awinda[®] AX-CAP[®]* Global Power ResourceSM ® TinyBoost® GreenBridge™ TinyBuck® Power Supply WebDesigner™ TinyCalc™ BitSiC™ Green FPS™ PowerTrench Build it Now™ TinyLogic® Green FPS™ e-Series™ PowerXS™ CorePI US™ Gmax™ TINYOPTO™ Programmable Active Droop™ GTO™ CorePOWER™ TinyPower™ QFĔT CROSSVOLT™ IntelliMAX™ TinyPWM™ QS™ TinvWire™ CTL™ ISOPI ANAR™ Quiet Series™ Current Transfer Logic™ TranSiC™ Making Small Speakers Sound Louder RapidConfigure™ TriFault Detect™ **DEUXPEED**[®] and Better Dual Cool™ TRUECURRENT®* MegaBuck™ Saving our world, 1mW/W/kW at a time™ **EcoSPARK**[®] MICROCOUPLER™ μSerDes™ SignalWise™ EfficientMax™ MicroFET™ SmartMax™ MicroPak™ ESBC™ SMART START™ MicroPak2™ F UHC Solutions for Your Success™ MillerDrive™ Ultra FRFET™ Fairchild® SPM[®] MotionMax™ UniFET™ Fairchild Semiconductor® STEALTH™ MotionGrid® VCX™ FACT Quiet Series™ SuperFET[®] MTi[®] VisualMax™ FACT SuperSOT™-3 MTx® VoltagePlus™ FastvCore™ SuperSOT™-6 MVN® XS™ FETBench™ SuperSOT™-8 mWSaver® Xsens™ SupreMOS[®] **FPS™** OptoHiT™ 仙童® SyncFET™ **OPTOLOGIC[®]** Sync-Lock™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP:///WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is augement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 177