

Specification

BT45258

BTHQ128064AVE1-FETF-06-LEDWHITE-COG

Doc. No.: COG-BTHQ12864-11 Version November 2010

DOCUMENT REVISION HISTORY 1:

DOCUMENT	DATE	DESCRIPTION	CHANGED	CHECKED
			ВҮ	ВҮ
DOCUMENT REVISION FROM TO A	-	DESCRIPTION First Release.	CHANGED BY ZHU YANG NA	CHECKED BY DU CHUAN ZONG

CONTENTS

Page No.

1.	GENERAL DESCRIPTION	4
2.	MECHANICAL SPECIFICATIONS	4
3.	INTERFACE SIGNALS	7
4.	ABSOLUTE MAXIMUM RATINGS	9
4.1	ELECTRICAL MAXIMUM RATINGS (Ta=25°C)	9
4.2	ENVIRONMENTAL CONDITION	9
5.	ELECTRICAL SPECIFICATIONS	10
5.1	TYPICAL ELECTRICAL CHARACTERISTICS	10
5.2	TIMING SPECIFICATIONS	11
5.3	INSTRUCTION SET	14
6.	REFERENCE APPLICATION CIRCUIT (8080) EXAMPLE	16
7.	LCD COSMETIC CONDITIONS	17
8.	REMARK	17

Specification of LCD Module Type Model No.: COG-BTHQ12864-11

1. General Description

- 128 x 64 dots FSTN Positive Black & White Transflective Dot Matrix LCD Module.
- Viewing Angle: 6 o'clock direction.
- Driving duty: 1/65 duty, 1/7 bias.
- 'Epson' S1D 15605D (SED1565D0B) (COG) Dot Matrix LCD Driver.
- 6800/8080 Series MPU interface.
- FPC.
- White LED05 backlight.

2. Mechanical Specifications

The mechanical detail is shown in Fig. 1 and summarized in Table 1 below.

Table 1

Parameter	Specifications	Unit
Outline dimensions	89.7(W) x 49.8(H) x 6.0(D)(Exclude FPC & gate)	mm
	89.7(W) x 149.8(H) x 6.0(D)(Include FPC. Exclude gate)	
	89.7(W) x 150.0(H) x 6.0(D)(Include FPC and gate)	
View area	66.8 MIN.(W) x 35.5 MIN. (H)	mm
Active area	63.985(W) x 31.985(H)	mm
Display format	128 (W) x 64(H)	dots
Dot size	0.485(W) x 0.485(H)	mm
Dot spacing	0.015(W) x 0.015(H)	mm
Dot pitch	0.500(W) x 0.500(H)	mm
Weight:	Approx: 27.5	grams

m <1 10.09.28 BTHQ128064AVE1-FETF-06-LEDWHITE-COG DATE DATE COG ψ PROJECT NO:COG-BTHQ12864 BASED ON CDG-BTHQ12864 CHANGE LED FILE NO:COG-BTHQ12864-11 R0|REV: \$ θF WHITE LED X3 1) 30 PINS FPC N / A X.X ±0.3 X.XX ±0.1 ANGULAR: ±1 ° SIGN STN, B&W 28 X 64 [1/65 DUT 1/7 BIAS SCALE: D0 N0T DN SCALE OVERALL THK: A/A TLE: SPECIFICATION TEM NO.: BT45258 Ø AMENDMENT FINISH: HU FANG LIANG DU CHUAN ZONG PRITT LEE THIRD ANGLE PROJECTION NAME TOLERANCE UNLESS X OTHERWISE SPECIFIED: X DIMENSIONS IN MM A Ы Display Resolution Viewing Angle Mux ratio and Mux ratio and LCD controller /Driver Display Type Ölol DOT SIZE FOR CUSTOMER REFERENCE ONLY) MATERIAL: N/A CHECKED: APPROVED: DRAWN: amark ISSUE SHEET 16 17 18 GND VOUT CAP3-<u>510'0</u> CATHODE GATE ANODE ANO CONTACT SIDE LED CIRCUIT DIAGRAM (Z L) (8) [£12] SILLONE 15 VDD 0.7±0.07) 0.7±0.07] 1.83±0.2 - ^ Å 0.3±0.05 SILICONE -TIFFENER 0.4 (8:17) ~...à 14 (66'87) (286.15 .A.A) (2.25 .A.V NIM) (NIM 0.34 .A.V) (XAM 2.01) 13 D6 -4711.0±5.04 ٤.٢ 2.55 12 12 30 85 (D.2 MAX) GATE 17, 02, 500 17, 02, 500 17, 550 0.8 MAX 0.01 XAM 11 11 11 11 € 0 (E.88) (E.88) \sim 4 D3 D3 15.50 P0.5X(30-1)=14.50 (58.6) DISPLAY CENTER L SILICONE 5.0±2.2 9 27 V5 5.0±0.4 (A.A. 63.985) (MIN V.A. 66.8) 26 D1 8 82.7±0.1 89.7±0.5 12.00 (68.3) 128 X 64 D0TS 7 73 73 73 \$100-HOLE 0.35±0.15 2.80 (44.85) 6 78 72 74 72 74 (37.1) (36.05) 5.0-2X XILICONE 2.0 MAX 5 /WR 23 V1 2.0 $\left(\oplus \right)$ 1 [12.86] 0.50 4 A0 22 CAP2+ XZ-0'L XZ-0'7 £.1 58.2 JOHT TE BOS /RES 21 CAP2-SPECIAL CHARACTERISTIC SAFETY CHARACTERISTIC CRITICAL DIMENSION : REFERENCE DIMENSION ASSIGNMENT 66.81 0.02 2.1 57+ 1 2 NC /CS1 /1 19 20 CAP1+ CAP1- CA (0.001) 5.0±8.64

C

LC.

4

N

Figure 1: Module Specification

 \square

NOTES:

♦ + Þ] = Nimist

PIN

BATRON

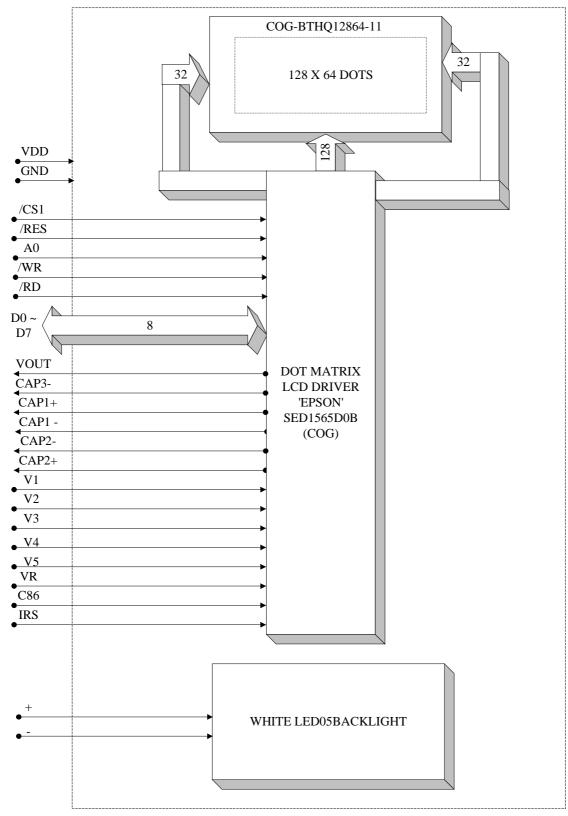


Figure 2: Block Diagram

3. Interface signals

Table 2 (a)

Pin	Symbol	Description
No.	5	
1	NC	No connection.
2	/CS1	This is the chip select signal. When $/CS1 = "L"$, then the chip select become active, and data/command I/O is enabled.
3	/RES	When /RES is set to "L," the settings are initialized. The reset operation is performed by the /RES signal level.
4	A0	This is connected to the least significant bit of the normal MPU address bus, and it determines whether the data bits are data or a command. A0 = "H": Indicates that D0 to D7 are display data. A0 = "L": Indicates that D0 to D7 are control data.
5	/WR	When connected to an 8080 MPU, this is active LOW. This terminal connects to the 8080 MPU /WR signal. The signals on the data bus are latched at the rising edge of the /WR signal.
6	/RD	When connected to an 8080 MPU, this is active LOW. This pin is connected to the /RD signal of the 8080 MPU, and the SED1565 series data bus is in an output status when this signal is "L".
7	D0	
8	D1	
9	D2	
10	D3	This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit 8 standard
11	D4	MPU data bus.
12	D5	
13	D6	
14	D7	
15	VDD	Power supply. Shared with the MPU power supply terminal VCC.
16	GND	Connection with ground.
17	VOUT	DC/DC voltage converter. Connect a capacitor between this terminal and GND.
18	CAP3-	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1+ terminal.
19	CAP1+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1-terminal.
20	CAP1-	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1+ terminal.
21	CAP2-	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2+ terminal.
22	CAP2+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2-terminal.

		Table 2 (b)
Pin	Symbol	Description
No.		
23	V1	This is a multi-level power supply for the liquid crystal drive. The voltage applied is determined by the liquid crystal cell, and is changed through the use of a resistive
24	V2	voltage divided or through changing the impedance using an op. amp. Voltage levels are determined based on VDD, and must maintain the relative magnitudes shown
25	V3	below. VDD (= V0) \geq V1 \geq V2 \geq V3 \geq V4 \geq V5
26	V4	Master operation: When the power supply turns ON, the internal power supply circuits produce the V1 to V4 voltages shown below. The voltage settings are selected
27	V5	using the LCD bias set command. <u>SED1566***</u> <u>SED1566***</u> <u>SED1566***</u> <u>SED1568***</u> <u>SED1569***</u> V1 1/9-V5 1/7-V5 1/8-V5 1/6-V5 1/6-V5 1/8-V5 1/8-V5 1/6-V5 1/8-V5 1/6-V5 V2 2/9-V5 2/7-V5 2/8-V5 2/6-V5 2/6-V5 2/8-V5 2/8-V5 2/6-V5 2/8-V5 2/6-V5 V3 7/9-V5 5/7-V5 6/8-V5 4/6-V5 4/6-V5 3/5-V5 6/8-V5 4/6-V5 6/8-V5 4/6-V5 V4 8/9-V5 6/7-V5 7/8-V5 5/6-V5 5/6-V5 5/6-V5 7/8-V5 5/6-V5 7/8-V5 5/6-V5
28	VR	Output voltage regulator terminal. Provides the voltage between VDD and V5 through a resistive voltage divider. These are only enabled when the V5 voltage regulator internal resistors are not used (IRS = "L"). These cannot be used when the V5 voltage regulator internal resistors are used (IRS = "H").
29	C86	This is the MPU interface switch terminal. C86 = "H": 6800 Series MPU interface. C86 = "L": 8080 MPU interface.
30	IRS	This terminal selects the resistors for the V5 voltage level adjustment. IRS = "H": Use the internal resistors IRS = "L": Do not use the internal resistors. The V5 voltage level is regulated by an external resistive voltage divider attached to the VR terminal. This pin is enabled only when the master operation mode is selected. It is fixed to either "H" or "L" when the slave operation mode is selected.
	+	Anode of backlight
	-	Cathode of backlight.

4. Absolute Maximum Ratings

4.1 Electrical Maximum Ratings (Ta = 25 °C)

Table 3										
Paramete	er	Symbol	Min.	Max.	Unit					
Power Supply voltage (Logi	c)	VDD-GND	-0.3	+7.0	V					
		=VDD-VSS								
Power supply voltage		GND(=VSS2)	-7.0	+0.3	V					
(VDD standard)	With Triple set-up		-6.0	+0.3	V					
	With Quad step-up		-4.5	+0.3	V					
Power Supply voltage(V5,V	OUT)	V5,VOUT	-18.0	+0.3	V					
(VDD standard)										
Power Supply voltage(V1~V	/4)	V1,V2,V3,V4	V5	+0.3	V					
(VDD standard)										
Input voltage		Vin	-0.3	VDD+0.3	V					

Note: 1.) The modules may be destroyed if they are used beyond the absolute maximum ratings.

2.) Insure that the voltage levels of V1, V2, V3, and V4 are always such that

$$VDD \ge V1 \ge V2 \ge V3 \ge V4 \ge V5.$$

3.) The VSS2,V1 to V5 and VOUT are relative to VDD=0V reference.

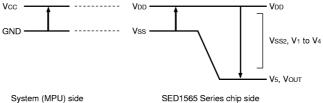


Figure 3:

4.2 Environmental Condition

		Table 4	<u>1</u>					
Item	Oper Tempe (To	erature	Stor Tempe (Ts (Not	Remark				
	Min.	Max.	Min.	Max.				
Ambient Temperature	-20°C	+70°C	-30°C	+80°C	Dry			
Humidity (Note 1)		$for Ta \leq 40^{\circ}C < Ta < 40^{\circ}C < 70^{\circ}C < 70^{\circ$	C Maximum oper	rating	No condensation			
Vibration (IEC 68-2-6) cells must be mounted on a suitable connector	Amplitude:	Frequency: 10 ~ 55 Hz Amplitude: 0.75 mm Duration: 20 cycles in each direction.						
Shock (IEC 68-2-27) Half-sine pulse shape	Pulse duration Peak accelerat Number of sh axes.	3 directions						

Note 1: Product cannot sustain at extreme storage conditions for long time.

BATRON

5. Electrical Specifications

5.1 Typical Electrical Characteristics

At Ta = 25 °C, VDD = 5V±5%, GND =0V.

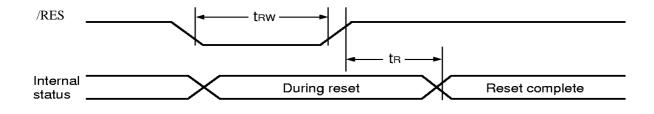
		Table 5				
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply voltage (Logic)	VDD-VSS		4.75	5.0	5.25	v
Supply voltage (LCD) (built-in)	VLCD =V0- VSS	$Ta = -20^{\circ}C,$ VDD = +5.0V, Note 1	-	-	-	V
		Ta = 25 °C, VDD = +5.0V, Note 1	7.8	8.0	8.2	V
		Ta = +70 °C, VDD = +5.0V, Note 1	-	-	-	V
Low-level input signal voltage	V _{ILC}		VSS	-	0.2xVDD	V
High-level input signal voltage	V _{IHC}		0.8xVDD	-	VDD	V
Supply Current (Logic & LCD)	IDD	VDD = +5.0V,Note 1, Character mode	-	0.5	0.8	mA
		VDD = +5.0V,Note 1, Checker board mode	-	1.3	1.9	mA
Supply current of white LED05 backlight	If	Forward current =45 mA	4.8	5.0	5.2	V
Luminance (on the backlight surface) of backlight		Number of dies = $1x3=3$	_	300	-	cd/m ²

Note 1: There is tolerance in optimum LCD driving voltage during production and it will be within the specified range.

Note 2: Do not display a fixed pattern for more than 30 min. because it may cause image sticking due to LCD characteristics. It is recommended to change display pattern frequently. If customer must fix display pattern on the screen, please consider to activate screen saver.

BATRON

5.2 Timing Specifications


Reset Timing

At Ta = -20 °C to +70 °C, VDD = +5.0V±5%, GND = 0V.

Table 6

Item	Signal	nal Symbol Condition			Rating		Units	
nem	Signal	Symbol	Condition	Min	Тур	Max	Units	
Reset time		t R		—	_	0.5	μs	
Reset "L" pulse width	RES	trw		0.5	_	_	μs	

Note: All timing is specified with 20% and 80% of VDD as the standard.

Figure 4:Reset Timing

System Bus Read/Write Characteristics (8080 Series MPU) At Ta = -20 °C to +70 °C, VDD = +5.0V±5%, GND = 0V.

Table 7

ltem	Signal Symbo		Condition	Rat	Units	
nem	Signal	Symbol	Condition	Min	Мах	Units
Address hold time Address setup time	A0	tah8 taw8		0 0		ns ns
System cycle time	A0	tсүс8		166		ns
$\begin{array}{l} \mbox{Control L pulse width } (\overline{WR}) \\ \mbox{Control L pulse width } (\overline{RD}) \\ \mbox{Control H pulse width } (\overline{WR}) \\ \mbox{Control H pulse width } (\overline{RD}) \end{array}$	WR RD WR RD	tcclw tcclr tccнw tccнr		30 70 30 30		ns ns ns ns
Data setup time Address hold time	D0 to D7	tds8 tdн8		30 10		ns ns
RD access time Output disable time		tacc8 toн8	C∟ = 100 pF	5	70 50	ns ns

*1 The input signal rise time and fall time (tr, tr) is specified at 15 ns or less. When the system cycle time is extremely fast, $(tr + tf) \le (t_{CYC8} - t_{CCLW} - t_{CCHW})$ for $(tr + tf) \le (t_{CYC8} - t_{CCLR} - t_{CCHR})$ are specified. All timing is specified using 20% and 80% of VDD as the reference.

*2

*3 toolw and toolR are specified as the overlap between $\overline{CS1}$ being "L" (CS2 = "H") and \overline{WR} and \overline{RD} being at the "L" level.

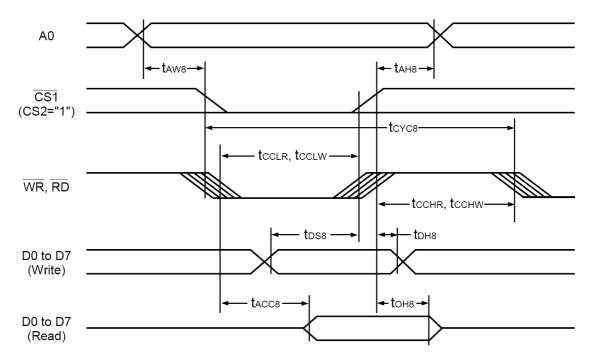


Figure 5: MPU bus read / write timing diagram (80 family MPU)

System Bus Read/Write Characteristics (6800 Series MPU) At Ta = -20 °C to +70 °C, VDD = +5.0V±5%, VSS = 0V.

ltem		Signal	Signal Symbol C		Rat	Units	
nem		Signal	Symbol	Condition	Min	Max	Units
Address hold time Address setup time		A0	tahe tawe		0 0	_	ns ns
System cycle time	System cycle time		A0 tcyc6		166	_	ns
Data setup time Data hold time		D0 to D7	tds6 tdH6		30 10	_	ns ns
Access time Output disable time			tacc6 toh6	C∟ = 100 pF	 10	70 50	ns ns
Enable H pulse Read time Write		E	tewhr tewhw			_	ns ns
Enable L pulse Read time Write		E			30 30		ns ns

Table 8

*1 The input signal rise time and fall time (tr, tr) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr + tr) ≤ (tcyc6 - tEwLw - tEwHw) for (tr + tr) ≤ (tcyc6 - tEwLR - tEwHR) are specified.
*2 All time rise are affect using 20% and 20% of Vca as the reference.

*2 All timing is specified using 20% and 80% of VDD as the reference.

*3 tewLw and tewLR are specified as the overlap between $\overline{\text{CS1}}$ being "L" (CS2 = "H") and E.

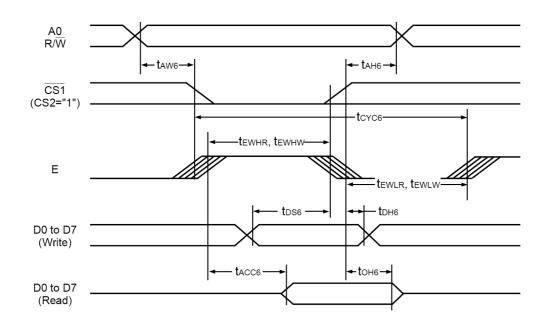


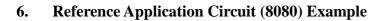
Figure 6: MPU bus read / write timing diagram (68 family MPU)

5.3 Instruction Set

Table 9

						Com	mand	Code					
	Command	A0	RD	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
(1)	Display ON/OFF	0	1	0	1	0	1	0	1	1	1	0 1	LCD display ON/OFF 0: OFF, 1: ON
(2)	Display start line set	0	1	0	0	1		Disp	olay sta	irt add	ress		Sets the display RAM display start line address
(3)	Page address set	0	1	0	1	0	1	1	P	Page a	ddres	s	Sets the display RAM page
(4)	Column address set upper bit	0	1	0	0	0	0	1		ost sig olumn			address Sets the most significant 4 bits of the display RAM column address.
	Column address set lower bit	0	1	0	0	0	0	0		east sig olumn			Sets the least significant 4 bits of the display RAM column address
(5)	Status read	0	0	1		Sta	atus		0	0	0	0	Reads the status data
(6)	Display data write	1	1	0				Write	data				Writes to the display RAM
(7)	Display data read	1	0	1				Read	l data				Reads from the display RAM
(8)	ADC select	0	1	0	1	0	1	0	0	0	0	0 1	Sets the display RAM address SEG output correspondence 0: normal, 1: reverse
(9)	Display normal/ reverse	0	1	0	1	0	1	0	0	1	1	0 1	Sets the LCD display normal/ reverse 0: normal, 1: reverse
(10)	Display all points ON/OFF	0	1	0	1	0	1	0	0	1	0	0 1	Display all points 0: normal display 1: all points ON
(11)	LCD bias set	0	1	0	1	0	1	0	0	0	1	0 1	Sets the LCD drive voltage bias ratio SED1565*** 0: 1/9, 1: 1/7 SED1566*** /SED1568*** /SED1569*** 0: 1/8, 1: 1/6 SED1567*** 0: 1/6, 1: 1/5
(12)	Read/modify/write	0	1	0	1	1	1	0	0	0	0	0	Column address increment At write: +1 At read: 0
(13)	End	0	1	0	1	1	1	0	1	1	1	0	Clear read/modify/write
(14)	Reset	0	1	0	1	1	1	0	0	0	1	0	Internal reset
(15)	Common output mode select	0	1	0	1	1	0	0	0 1	*	*	*	Select COM output scan direction 0: normal direction, 1: reverse direction
(16)	Power control set	0	1	0	0	0	1	0	1		peratii mode		Select internal power supply operating mode
(17)	V5 voltage regulator internal resistor ratio set	0	1	0	0	0	1	0	0	Res	sistor r	atio	Select internal resistor ratio (Rb/Ra) mode
(18)	Electronic volume	0	1	0	1	0	0	0	0	0	0	1	
	mode set Electronic volume register set	0	1	0	*	*		Electr	onic vo	olume	value		Set the V5 output voltage electronic volume register
(19)	Static indicator ON/OFF	0	1	0	1	0	1	0	1	1	0	0 1	0: OFF, 1: ON
	Static indicator register set	0	1	0	*	*	*	*	*	*	Mo	ode	Set the flashing mode
(20)	Power saver												Display OFF and display all points ON compound command
(21)	NOP	0	1	0	1	1	1	0	0	0	1	1	Command for non-operation
(22)	Test	0	1	0	1	1	1	1	*	*	*	*	Command for IC test. Do not use this command

(Note) *: disabled data



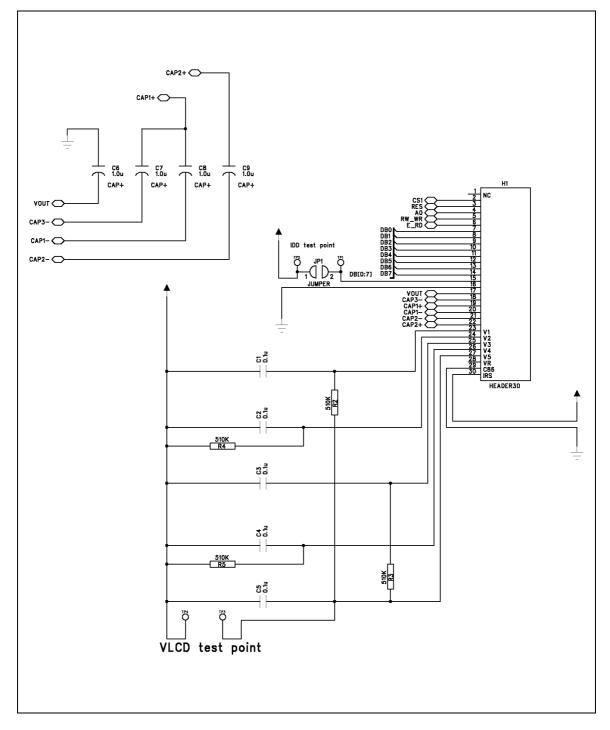

5.3.1 Initial code setting (for reference only)

Table 10

Item	Code
1 Reset	E2H
2 Power Control Set	2FH
3 LCD Bias Set	АЗН
4 ADC Select	A1H
5 Display Start Line Set	40H
6 Display normal/reverse Set	АбН
7 Display All Points ON/OFF Set	A4H
8 Static Indicator ON/OFF Set	ACH
9 Common Output Mode Select	СОН
10 V5 Voltage Regulator Internal Resistor Ratio Set	25H
11 Electronic Volume Mode Set	81H
12 Electronic Volume Register Set	18 H
12 Page Address Set	B0H
13 Column Address Set Upper Bit	10H
14 Column Address Set Lower Bit	00H
15 Display ON/OFF Set	AFH

BATRON

