THYRISTORS

Also available to BS9341-F084

Silicon thyristors in metal envelopes with high dV_D/dt capabilities. They are intended for use in power control circuits and switching systems where high transients can occur (e.g. phase control in three-phase systems).

The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTW42-600R to 1200R.

QUICK REFERENCE DATA

		BTW42-600R		800R	1000R	1200	R
Repetitive peak voltages	V_{DRM}/V_{RRM}	max.	600	800	1000	1200	V
Average on-state current		IT(A\		√)	max.	10	Α
R.M.S. on-state current		^I T(RMS)			max.	16	А
Non-repetitive peak on-state current			ITSM		max.	150	Α
Rate of rise of off-state voltage that will not trigger any device			dV _D /	dt	<	200	V/μs
On request (see ordering note on page 2)		dV _D /	dt	<	1000	V/μs

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-64: with metric M5 stud (ϕ 5 mm); e.g. BTW42-600R.

Net mass: 7 q

Diameter of clearance hole: max. 5,2 mm

Accessories supplied on request:

56295 (PTFE bush, 2 mica washers, plain washer, tag) 56262A (mica washer, insulating ring, plain washer)

Supplied with device: 1 nut, 1 lock washer Nut dimensions across the flats; M5: 8,0 mm

Torque on nut: min. 0,9 Nm (9 kg cm) max. 1,7 Nm (17 kg cm)

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Anode to cathode

Non-repetitive peak voltages		BTW42-600R 800R		800R	1000R 1200		R
(t ≤ 10 ms)	V _{DSM} /V _{RSM}	max.	600	800	1000	1200	٧
Repetitive peak voltages	v_{DRM}/v_{RRM}	max.	600	800	1000	1200	٧
Crest working voltages	V_{DWM}/V_{RWM}	max.	400	600	700	800	V *
Average on-state current (averaged over any 20 ms period) up to T _{mb} = 85 °C			I _{T(A)}	/)	max.	10	Α
R.M.S. on-state current			IT(RMS)		max.	16	Α
Repetitive peak on-state current			¹ TRM		max.	75	Α
Non-repetitive peak on-state current; thalf sine-wave; Tj = 125 °C prior to with reapplied V _{RWMmax}	•		ITSM		max.	150	Α
I ² t for fusing (t = 10 ms)			l ² t		max.	112	A²s
Rate of rise of on-state current after triggering with I_G = 250 mA to I_T = 25 A; dI_G/dt = 0,25 A/ μ s			dl _Ţ /dt		max.	50	A/μs
Gate to cathode							
Average power dissipation (averaged or any 20 ms period)	ver		PG(A	V)	max.	0,5	w
Peak power dissipation			P _{GM}		max.	5	W
Temperatures							
Storage temperature			T_{stg}		-55 to + 125 °C		οС
Junction temperature			Тj		max.	125	oC
THERMAL RESISTANCE							
From junction to mounting base			R _{th j-}	mb	=	1,8	oC/W
From mounting base to heatsink with heatsink compound			R _{th m}		=	0,5	oC/W
From junction to ambient in free air			R _{th i-a}		=	•	°C/W
Transient thermal impedance (t = 1 ms)			Z _{th j-}		=	0,1	oC/W

OPERATING NOTE

The terminals should neither be bent nor twisted; they should be soldered into the circuit so that there is no strain on them.

During soldering the heat conduction to the junction should be kept to a minimum.

ORDERING NOTE

Types with dV_D/dt of 1000 $V/\mu s$ are available on request. Add suffix C to the type number when ordering; e.g. BTW42-600RC.

^{*} To ensure thermal stability: R_{th j-a} < 4 °C/W (d.c. blocking) or < 8 °C/W (a.c.). For smaller heatsinks T_{j max} should be derated. For a.c. see Fig. 3.

200 V/µs

CHARACTERISTICS

Anode to cathode

On-state voltage $I_T = 20 \text{ A}; T_i = 25 \text{ }^{\circ}\text{C}$ < 2 V * ۷т

Rate of rise of off-state voltage that will not trigger any device; exponential method; VD = 2/3 VDRMmax;

$$T_j = 125$$
 °C $dV_D/dt <$

Reverse current

$$V_R = V_{RWMmax}; T_j = 125 \, ^{o}C \qquad \qquad I_R \qquad < \qquad 3 \, \text{ mA}$$
 Off-state current
$$V_D = V_{DWMmax}; T_j = 125 \, ^{o}C \qquad \qquad I_D \qquad < \qquad 3 \, \text{ mA}$$

Gate to cathode

Voltage that will trigger all devices $V_D = 6 V; T_i = 25 °C$ V_{GT}

1,5 V Voltage that will not trigger any device $V_D = V_{DRMmax}$; $T_i = 125$ °C 200 mV V_{GD}

Current that will trigger all devices
$$V_D = 6 \text{ V; T}_j = 25 \text{ }^{\text{OC}}$$
 IGT $>$ 50 mA

Switching characteristics

Gate-controlled turn-on time $(t_{gt} = t_d + t_r)$ when switched from $V_D = 800 \text{ V to } I_T = 25 \text{ A}$; $I_{GT} = 250 \text{ mA}$; $dI_{G}/dt = 0.25 \text{ A}/\mu\text{s}$; $T_{i} = 25 \text{ }^{\circ}\text{C}$ 1,5 µs ^tgt 0,2 μs typ.

Fig. 2 Gate-controlled turn-on time definitions.

Measured under pulse conditions to avoid excessive dissipation.

Fig. 3 (1) T_{mb} -scale is for comparison purposes only and is correct only for $R_{th\ mb-a} \leq 6$ °C/W.

Fig. 4.

Fig. 5 Minimum gate voltage that will trigger all devices as a function of T_j .

Fig. 6 Minimum gate current that will trigger all devices as a function of T_j .

Fig. 7.

Fig. 8 Maximum rate of rise of off-state voltage that will not trigger any device (exponential method) as a function of $T_{\rm j}$.

Fig. 9 Maximum rate of rise of off-state voltage that will not trigger any device (exponential method) as a function of applied voltage.

Fig. 10 Limits for starting or inrush currents.

Fig. 11 Limits for starting or inrush currents.

Fig. 12.