

Capacitive Sensor Control IC Series

Capacitive Sensor Switch Control IC

No.09048EBT01

Description

BU21050FS

BU21050FS are the capacitive sensor controller with 8ch respectively. The IC has the port interface and easy to replace the point of switch to this controller.

Features

- 1) Port output interface
- 2) Few software control

www.Data3)e4bitJBinary outputs or 8GPIO outputs

- 4) 5V power supply voltage available
- 5) Integrated 10bit AD converter, clock and reset
- 6) Package SSOP-A32

Applications

It is possible to use it widely as a switch such as home electric appliance.

● Absolute Maximum Ratings (Ta=25°C)

Absolute Maximum Natings (1a-25 C)						
DADAMETED	SYMBOL	RATII	LINUT			
PARAMETER	STIVIBUL	MIN	MAX	UNIT		
Applied veltage	AVDD	-0.3 7.0		V		
Applied voltage	DVDD	-0.3	7.0	V		
lanut valtara	Vain	-0.3	AVDD + 0.3			
Input voltage	VDIN	-0.3	DVDD + 0.3	V		
Storage temperature range	Tstg	-55	125	°C		
Power dissipation	Pd	760				

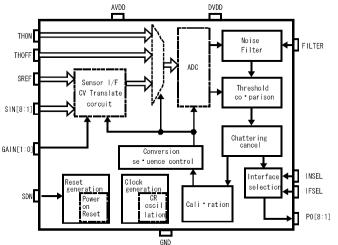
Ambient temperature reduces a permission loss by 7.6mW per case more than 25 degrees Celsius, 1 degree Celsius

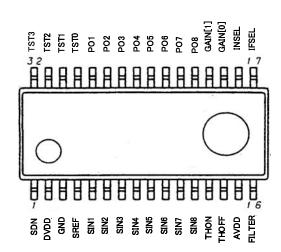
Recommended Operating conditions

DADAMETED	CVMDOL		RATING		LINIT
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Applied veltage	AVDD	4.5	5.0	5.5	V
Applied voltage	DVDD	4.5	5.0	5.5	V
Operating temperature range	Topr	-40	25	85	°C

● Electrical characteristics(Especially, Topr=25°C and AVDD=DVDD=0 as long as it doesn't specify it.)

Home	Cumphal	Rating			l lm:4	Condition		
Item	Symbol	Min	Тур	Max	Unit	Condition		
	DC characteristics							
Input"H"voltage	VIHIO	DVDD x 0.9	-	DVDD + 0.2	٧			
Input"L"voltage	VILIO	GND - 0.2	-	DVDD x 0.1	٧			
Output"H"voltage	Vоню	DVDD x 0.8	-	DVDD	٧	IOH = -2[mA].Overshoot is excluded.		
Output"L"voltage	Vol	GND	-	DVDD x 0.2	٧	IoL = 2[mA].Undershoot is excluded.		
Input leakage current	lız	-1	-	1	μΑ			
Output leakage current	loz	-	-	1	μΑ			
Standby current	Ist	-	-	2	μΑ	Shutdown (SDN="L")		
Operation current	IDD	-	550	-	uA			


●A/D Converter


DataSheet4U PARAMETER	CVMDOL		RATING			Condition
PARAIVIETER	SYMBOL	MIN	TYP	MAX	UNIT	Condition
Resolution		-	10	-	bit	
Analog Input voltage	Vain	GND	-	AVDD	V	
Change clock frequency	fadck	0.2	-	2.0	MHz	
Change time	ftim	-	13	-	μsec	fadck = 1[MHz]
Zero scale voltage		-	-	GND + 0.07	V	
Full scale voltage		AVDD - 0.07	-	-	V	
Differential non line accurate	DNL	-	-	±3	LSB	
Integrate non line accurate	INL	-	-	±3	LSB	

●CR Oscillator characteristic

DADAMETED	CVMDOL		RATING		UNIT	Condition
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	Condition
Frequency Oscillation	fcr	0.8	1.6	2.5	MHz	

Block Diagram, Pin configuration

www.DataSheet4U.com

· Sensor I/F CV Conversion Circuit

This part selects target sensor and converts its capacitance to a voltage signal. Specifically, all eight sensors are selected one-by-one and their capacity is compared to a common referencecapacity. Each difference value is converted to a certain voltage signal.

AD Conversion

The voltage signal derived from CV conversion is further converted to digital value by this block.

Conversion Sequence Control

This block controls the process of CV conversion and generates timing of selecting target sensors.

Noise Filter

The GND level difference between appliance and human body will cause noises to the CVconversion circuit. This block eliminates these noises.

· Compare threshold

CV converted to sensor data On / Off compared with a threshold, the switch converts the signal.

· Interface Selection

By setting this block, output mode can be set to either 8-bit PIO mode or 4-bit binary mode.

Calibration

When the capacitance change do not exceed the threshold for a certain period, this block tarts-up calibration process.

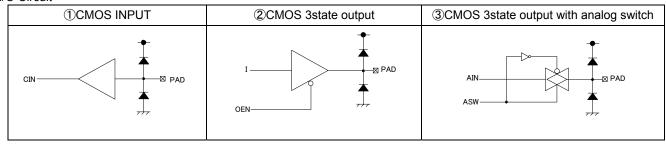
Reset Generation

This is internal reset circuit. Reset is initialized by external SDN signal.

Clock Generation

Clock from internal RC oscillation circuit is used as system clock.

●Pin Description


	in Des	cription		1	1				r
	Pin No.	Name	I/O	Function	Note	Supply	Reset L	evel	I/O Pad
	1	SDN	In	Shutdown input	"H": state of operation "L" halt condition	DVDD			1
	2	DVDD	Power	Digital part Power supply	Digital part Power supply	-			
	3	GND	Ground	Ground	-	-			
	4	SREF	Aln	Standard capacitor input	-	AVDD	"Hi-Z	<u>Z</u> "	3
	5	SIN1	Aln	Sensor input1	-	AVDD	"Hi-Z	<u>Z</u> "	3
	6	SIN2	Aln	Sensor input 2	-	AVDD	"Hi-Z	<u>Z</u> "	3
	7	SIN3	Aln	Sensor input 3	-	AVDD	"Hi-Z	<u>Z</u> "	3
	8	SIN4	Aln	Sensor input 4	-	AVDD	"Hi-Z	<u>Z</u> "	3
	9	SIN5	Aln	Sensor input 5	-	AVDD	"Hi-Z	<u>Z</u> "	3
	10	SIN6	Ain	Sensor input 6	-	AVDD	"Hi-Z	<u>Z</u> "	3
	11	SIN7	Aln	Sensor input 7	-	AVDD	"Hi-Z	<u>Z</u> "	3
	12	SIN8	Aln	Sensor input 8	-	AVDD	"Hi-Z	<u>Z</u> "	3
www.D	13	THON	Aln	Sensor ON threshold voltage input	-	AVDD	"Hi-Z	<u>Z</u> "	3
	14	THOFF	Aln	Sensor OFF threshold voltage input		AVDD	"Hi-Z	<u>Z</u> "	3
	15	AVDD	Power	Analog part Power supply	-	-			
	16	FILTER	In	Filter selection	"H": Filter effect: strong "L": Filter effect: Weak	DVDD		1	
	17	IFSEL	In	Sensor output selection	"H" :ON : L-Active, OFF : Nch Open Drain "L": 4bit Binary Mode H-Active, L	DVDD		1	
	18	INSEL	In	simultaneous push selection	"H" : simultaneous push banned "L" : 8 outputs setting	DVDD			1
	19	GAIN[0]	In		GAIN[1:0] = 00 : Strong	DVDD			1
	20	GAIN[1]	In	Gain level selection	GAIN[1:0] = 01 :	DVDD			1
	21	PO8	Out	sensor output8	-	DVDD	"Hi-Z"*2	"L"*3	2
	22	P07	Out	sensor output7	-	DVDD	"Hi-Z"	"L"	2
	23	PO6	Out	sensor output6	-	DVDD	"Hi-Z"	"L"	2
	24	PO5	Out	sensor output5	-	DVDD	"Hi-Z"	"L"	2
	25	PO4	Out	sensor output4/BIN[3]	INSEL="L": Binary Mode	DVDD	"Hi-Z"	"L"	2
	26	PO3	Out	sensor output3/BIN[2]	0000 = Button OFF	DVDD	"Hi-Z"	"L"	2
	27	PO2	Out	sensor output2/BIN[1]	0001 = SIN1 ON	DVDD	"Hi-Z"	"L"	2
	28	PO1	Out	sensor output1/BIN[0]	1000 = SIN8 ON	DVDD	"Hi-Z"	"L"	2
	29	TST0	In	digital part test input0	Usually tide to "L"	DVDD			1
	30	TST1	In	digital part test input1	Usually tide to "L"	DVDD			1
	31	TST2	In	digital part test input2	Usually tide to "L"	DVDD			1
	32	TST3	In	digital part test input3	Usually tide to "L"	DVDD			1

^{**1} Initial State ①When internal organs power-on reset is effective ②When SDN="L"

**2 "Hi-Z" when Pio Node

^{※3 &}quot;L" when Binary Mode

●I/O Circuit

[IFSEL: Output interface format]

IFSEL	Mode	Output format
Н	8ch PIO	L-active, Nch Open Drain
L	4bit Binary	H-active, L

INSEL = H: 8GPIOs output mode www.DataInitialtstatus:PO[8:1] = Hi-Z

INSEL = L: 4bit Binary output mode

Initial Status PO[4:1] = L	
Button	
Button OFF	

Button	PO[4:1]
Button OFF	0000
SIN1	0001
SIN2	0010
SIN3	0011
SIN4	0100
SIN5	0101
SIN6	0110
SIN7	0111
SIN8	1000

Only the first sensor input was effective in terms of button ON judgment when more than one input has occurred. Next judgment would be done after all the button is OFF.

[INSEL: Simultaneous push judgment control]

This setting is effective when IFSEL = "H"

11110 0011	The cetting to chective when it car					
INSEL	Function	Note				
Н	Simultaneous push banned	Only the dominant button will outputwhen more than 2 buttons were pressed				
L	Simultaneous push effective	Every button that was pressed will output				

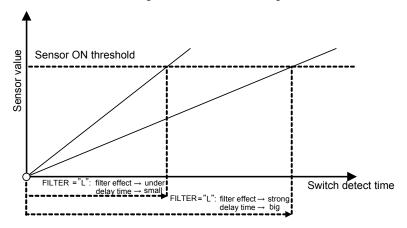
[THON: Button OFF→ON threshold value judge] [THOFF: Button ON→OFF threshold value judge]

Setting the threshold value of electrostatic Sensor Switches. By applying voltages can be set. As an example, 1/2VDD applied to the entire range of the sensor output 1 / 2 to set the threshold value. In fact, the voltage setting resistance to the partial pressure is recommended to us.

[GAIN Selection]

Sensor gain can be set in 4 stages

GAIN[1:0] = 00 (x92)


GAIN[1:0] = 01 (x69)

GAIN[1:0] = 10 (x46)

GAIN[1:0] = 11 (x1)

[Filter selection]

The noise filter effect can be selected If "Strong" is selected, noise will get down, but the reaction time will be longer.

Setting method

1)Please for the first time in a minimum gain.

2)THOFF = 0V, and, THON 1/2VDD voltage as a guideline for whether or not to switch ON, and gain selection to please the rough.

Note: ON gain to a minimum, you gain more precision amended to increase the impact too, so please take note.

Operation Mode

This IC has several modes, called detection mode, calibration mode, and shut-down mode. Each modeis described as follow

[Detection Mode]

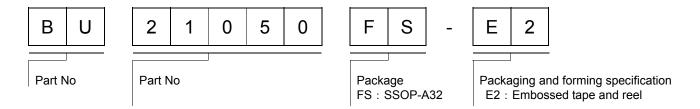
This is normal operation mode of this IC. In this mode, IC detects the sensor capacitance continually.

[Calibration Mode]

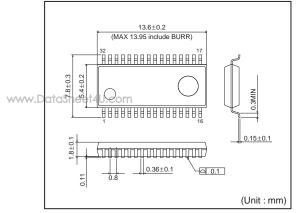
Under detection mode when no operation has been detected for sometime, Sensor offset calibration will be done. And the interval between each calibration is fixed

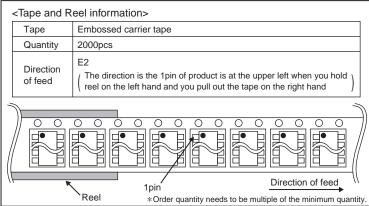
Detection mode and Calibration mode are switched automatically.

[Shutdown Mode]


When SDN pin is set to "L", IC will be shut-down and all internal circuits will stop working. IC will work again when SDN pin is set to "H".

Power Supply ON Sequence


This IC has two power input pins AVDD and DVDD. Power ON sequence must be whether set DVDD firstor set the two at one time. Since internal reset circuit is monitoring AVDD, wrong power ON sequencemay cause initialization error.


© 2009 ROHM Co., Ltd. All rights reserved.

Ordering part number

SSOP-A32

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

www.DataSheet4U.co