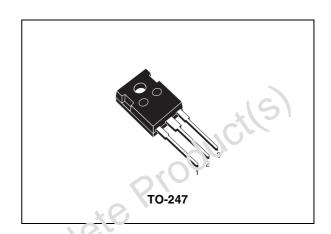


High voltage fast-switching NPN power transistor

Features


- High voltage capability
- Very high switching speed
- Minimum lot-to-lot spread for reliable operation
- Low base-drive requirements

Applications

- Switch mode power supplies
- Motor control

The BUF410A is manufactured using high voltage multi epitaxial planar technology for high switching speeds and high voltage capacity. It uses a cellular emitter structure with planar edge termination to enhance switching speeds while maintaining a wide RBSOA.

'-เงูนาย 1. Internal schematic diagram

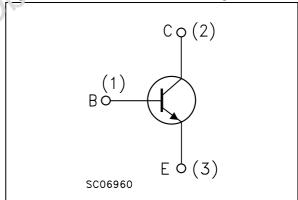


Table 1. Device summary

Order code	Marking	Package	Packaging		
BUF410A	BUF410A	TO-247	Tube		

Electrical ratings BUF410A

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CEV}	Collector-emitter voltage (V _{BE} = -1.5 V)	1000	V
V _{CEO}	Collector-emitter voltage (I _B = 0)	450	V
V _{EBO}	Emitter-base voltage $(I_C = 0)$	7	V
I _C	Collector current	15	Α
I _{CM}	Collector peak current (t _P < 5 ms)	30	Α
Ι _Β	Base current	3	Α
I _{BM}	Base peak current (t _P < 5 ms)	1.5	Α
P _{tot}	Total dissipation at T _c = 25 °C	125	W
T _{stg}	Storage temperature	-65 to 150	°C
TJ	Max. operating junction temperature	150	°C

Table 3. Thermal data

	Symbol	Parameter		Value	Unit	
	R _{thj-case}	Thermal resistance inclion-case	max	1	°C/W	
	,	CIC			•	
		1000				
	0					
	10'					
~O/k						
0/02						
0.						

2 Electrical characteristics

 $(T_{case} = 25 \, ^{\circ}C \text{ unless otherwise specified})$

Table 4. Electrical characteristics

	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	I _{CER}	Collector cut-off current (R _{BE} = 10 Ω)	V _{CE} = 1000 V V _{CE} = 1000 V T _C = 100 °C			0.2	mA mA
	I _{CEV}	Collector cut-off current (V _{BE} = -1.5 V)	V _{CE} = 1000 V V _{CE} = 1000 V T _C = 100 °C			0.2	Anr Anr
	I _{EBO}	Emitter cut-off current (I _C = 0)	V _{EB} = 5 V	00	M	1	mA
	V _{CEO(sus)} (1)	Collector-emitter sustaining voltage (I _B = 0)	I _C = 200 mA	450			V
	V _{EBO}	Emitter-base voltage (I _C = 0)	I _E = 50 mA	7			V
	V _{CE(sat)} (1)	Collector-emitter saturation voltage	$I_C = 5 \text{ A}$ $I_B = 0.5 \text{ A}$ $I_C = 5 \text{ A}$ $I_B = 0.5 \text{ A}$ $T_C = 100 ^{\circ}\text{C}$ $I_C = 10 \text{ A}$ $I_B = 2 \text{ A}$ $I_C = 10 \text{ A}$ $I_B = 2 \text{ A}$ $T_C = 100 ^{\circ}\text{C}$		0.8	2.8	< < < <
	V _{BE(85.1)} (1)	Basc-emitter	$I_C = 5 \text{ A}$ $I_B = 0.5 \text{ A}$ $I_C = 5 \text{ A}$ $I_B = 0.5 \text{ A}$ $T_C = 100 ^{\circ}\text{C}$ $I_C = 10 \text{ A}$ $I_B = 2 \text{ A}$ $I_C = 10 \text{ A}$ $I_B = 2 \text{ A}$ $T_C = 100 ^{\circ}\text{C}$		0.9	1.5	V V V
Obsole	di _{c /} dt	Rate of rise on-state collector current	$\begin{split} & V_{CC} = 300 \ V & R_C = 0 & t_p = 3 \ \mu s \\ & I_{B1} = 0.75 \ A & T_C = 25 \ ^{\circ}C \\ & I_{B1} = 0.75 \ A & T_C = 100 \ ^{\circ}C \\ & I_{B1} = 3 \ A & T_C = 100 \ ^{\circ}C \end{split}$	45 100	60		A/μs A/μs A/μs
	V _{CE(dyn)}	Collector-emitter dynamic voltage (3 µs)	$V_{CC} = 300 \text{ V}$ $R_C = 60 \Omega$ $I_{B1} = 0.75 \text{ A}$ $T_C = 25 ^{\circ}\text{C}$ $I_{B1} = 0.75 \text{ A}$ $T_C = 100 ^{\circ}\text{C}$		2.1	8	V V
	V _{CE(dyn)}	Collector-emitter dynamic voltage (5 µs)	$V_{CC} = 300 \text{ V}$ $R_C = 60 \Omega$ $I_{B1} = 0.75 \text{ A}$ $T_C = 25 ^{\circ}\text{C}$ $I_{B1} = 0.75 \text{ A}$ $T_C = 100 ^{\circ}\text{C}$		1.1	4	V V
	t _s t _f t _C	Inductive load Storage time Fall time Cross over time	$\begin{split} I_{C} &= 5 \text{ A} & V_{CC} &= 50 \text{ V} \\ V_{BB} &= -5 \text{ V} & R_{BB} &= 1.2 \Omega \\ V_{Clamp} &= 400 \text{ V} & I_{B1} &= 0.5 \text{ A} \\ L &= 0.5 \text{ mH} \end{split}$		0.8 0.05 0.08		μs μs μs

57

Electrical characteristics BUF410A

Table 4. Electrical characteristics (continued)

	Symbol	Parameter	Test co	nditions	Min.	Тур.	Max.	Unit
	t _s t _f	Inductive load Storage time Fall time Cross over time	$I_{C} = 5 A$ $V_{BB} = -5 V$ $V_{Clamp} = 400 V$ $L = 0.5 \text{ mH}$				1.8 0.1 0.18	μs μs μs
	V _{CEW}	Maximum collector emitter voltage without snubber	$I_C = 5 A$ $V_{BB} = -5 V$ $I_{B1} = 0.5 A$ $T_C = 125 °C$		500			V
	t _s t _f t _c	Inductive load Storage time Fall time Cross over time	$I_{C} = 5 \text{ A}$ $V_{BB} = 0$ $V_{Clamp} = 400 \text{ V}$ $L = 0.5 \text{ mH}$	$V_{CC} = 50 \text{ V}$ $R_{BB} = 0.3 \Omega$ $I_{B1} = 0.5 \text{ A}$	C	1.5 7.04 0.07	ile	μs μs μs
	t _s t _f t _c	Inductive load Storage time Fall time Cross over time	$I_{C} = 5 \text{ A}$ $V_{BB} = 0$ $V_{Clamp} = 400 \text{ V}$ $L = 0.5 \text{ mH}$	$V_{CC} = 50 \text{ V}$ $R_{BB} = 0.0 \Omega$ $I_{E1} = 0.5 \text{ A}$ $I_{C} = 100 \text{ °C}$			3 0.15 0.25	μs μs μs
	V _{CEW}	Maximum collector emitter voltage without snubber	$I_{C} = 5 \text{ A}$ $V_{BL} = 0$ $I_{B1} = 0.5 \text{ A}$ $I_{C} = 125 \text{ °C}$	V_{CC} = 50 V R_{BB} = 0.3 Ω L = 0.5 mH	500			V
	t _S t _f	Inductive oad Storago fime Fall time Cross over time	$I_{C} = 10 \text{ A}$ $V_{BB} = -5 \text{ V}$ $V_{Clamp} = 400 \text{ V}$ $L = 0.25 \text{ mH}$			1.9 0.06 0.12		μs μs μs
insole	t _s t _f t _c	Inductive load Storage time Fall time Cross over time	$I_C = 10 \text{ A}$ $V_{BB} = -5 \text{ V}$ $V_{Clamp} = 400 \text{ V}$ $L = 0.25 \text{ mH}$				3.2 0.12 0.3	μs μs μs
) ~	V _{CEW}	Maximum collector emitter voltage without snubber	$I_C = 15 \text{ A}$ $V_{BB} = -5 \text{ V}$ $I_{B1} = 3 \text{ A}$ $T_C = 125 \text{ °C}$	$V_{CC} = 50 \text{ V}$ $R_{BB} = 1.2 \Omega$ $L = 0.1 \text{ mH}$	400			V

^{1.} Pulse duration = 300 μ s, duty cycle \leq 1.5%

4/9

2.1 Electrical characteristics (curves)

Figure 2. Forward biased safe operating area

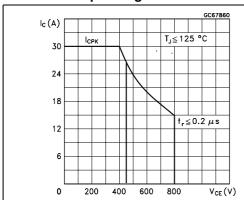
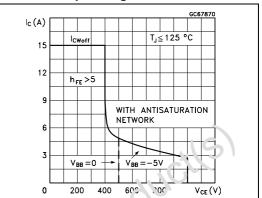
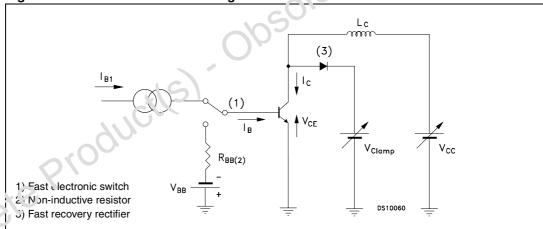
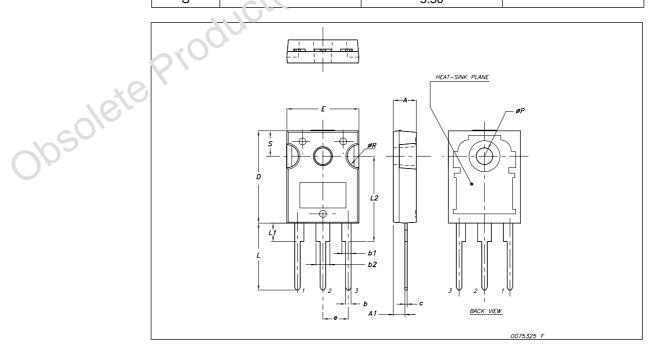




Figure 3. Reverse biased safe operating area

2.2 Test circuit

Figure 4. Inductive load switching test circuit

47/


3 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

Obsolete Producits). Obsolete Producits

TO-247 Mechanical data

Dim.	mm.					
Diiii.	Min.	Тур	Max.			
Α	4.85		5.15			
A1	2.20		2.60			
b	1.0		1.40			
b1	2.0		2.40			
b2	3.0		3.40			
С	0.40		0.80			
D	19.85		20.15			
E	15.45	20,	15.75			
е		5/5				
L	14.20	60/0	14.80			
L1	3.70	102	4.30			
L2		18.50				
øΡ	3.55		3.65			
øR	4.50		5.50			
S		5.50				

577

Revision history BUF410A

4 Revision history

Table 5. Document revision history

Date	Revision	Changes
18-Mar-2002	2	
13-Mar-2008	3	Package change from TO-218 to TO-247.

Obsolete Product(s). Obsolete Product(s)

8/9

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its stibs. dicties ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and set rices described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be doesned an cense grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND CALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZEL OF WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY CALLY SE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale (f S *products with provisions different from the statements and/or technical features set forth in this document shall immediately void any ...ar anty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any ability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

