

N-channel 40 V, 4.4 mΩ logic level MOSFET in LFPAK56 20 February 2013

Product data sheet

1. **General description**

Logic level N-channel MOSFET in an LFPAK56 (Power SO8) package using TrenchMOS technology. This product has been designed and qualified to AEC Q101 standard for use in high performance automotive applications.

2. **Features and benefits**

- Q101 compliant •
- Repetitive avalanche rated
- Suitable for thermally demanding environments due to 175 °C rating
- True logic level gate with V_{GS(th)} rating of greater than 0.5 V at 175 °C

Applications 3.

- 12 V Automotive systems
- Motors, lamps and solenoid control
- Transmission control
- Ultra high performance power switching •

Quick reference data 4.

Table 1. Quick reference data							
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	-	40	V
I _D	drain current	V _{GS} = 5 V; T _{mb} = 25 °C; <u>Fig. 1</u>	[1]	-	-	100	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; <u>Fig. 2</u>		-	-	147	W
Static characte	eristics		1				
R _{DSon}	drain-source on-state resistance	V _{GS} = 5 V; I _D = 25 A; T _j = 25 °C; <u>Fig. 11</u>		-	3.7	4.4	mΩ
Dynamic characteristics							
Q _{GD}	gate-drain charge	V _{GS} = 5 V; I _D = 25 A; V _{DS} = 32 V; T _j = 25 °C; <u>Fig. 13</u> ; <u>Fig. 14</u>		-	8.7	-	nC

[1] Continuous current is limited by package.

N-channel 40 V, 4.4 mΩ logic level MOSFET in LFPAK56

5. Pinning information

Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	S	source	mb	D
2	S	source		
3	S	source	q	G-UTA
4	G	gate	មុប្បូប្	mbb076 S
mb	D	mounting base; connected to drain	1 2 3 4 LFPAK; Power- SO8 (SOT669)	

6. Ordering information

Table 3. Ordering information						
Type number	Package					
	Name	Description	Version			
BUK9Y4R4-40E	LFPAK; Power-SO8	plastic single-ended surface-mounted package; 4 leads	SOT669			

7. Marking

Table 4. Marking codes	
Type number	Marking code
BUK9Y4R4-40E	94E440

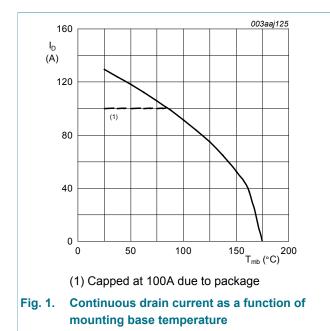
8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Мах	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	40	V
V _{DGR}	drain-gate voltage	R _{GS} = 20 kΩ		-	40	V
V _{GS}	gate-source voltage	T _j ≤ 175 °C; DC		-10	10	V
		$T_j \le 175 \text{ °C}; \text{ Pulsed}$	[1][2]	-15	15	V
I _D	drain current	T _{mb} = 25 °C; V _{GS} = 5 V; <u>Fig. 1</u>	[3]	-	100	А
		T _{mb} = 100 °C; V _{GS} = 5 V; <u>Fig. 1</u>		-	91	А
I _{DM}	peak drain current	T_{mb} = 25 °C; pulsed; $t_p \le 10 \ \mu$ s; Fig. 4		-	516	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; <u>Fig. 2</u>		-	147	W

All information provided in this document is subject to legal disclaimers.


BUK9Y4R4-40E

03aa16

N-channel 40 V, 4.4 mΩ logic level MOSFET in LFPAK56

Symbol	Parameter	Conditions		Min	Мах	Unit
T _{stg}	storage temperature			-55	175	°C
Tj	junction temperature			-55	175	°C
Source-drai	n diode	·				
l _S	source current	T _{mb} = 25 °C	[3]	-	100	А
I _{SM}	peak source current	pulsed; $t_p \le 10 \ \mu s$; $T_{mb} = 25 \ ^\circ C$		-	516	А
Avalanche r	ruggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$\begin{split} & I_{D} = 100 \; A; V_{sup} \leq 40 \; V; R_{GS} = 50 \; \Omega; \\ & V_{GS} = 5 \; V; T_{j(init)} = 25 \; ^{\circ}C; unclamped; \\ & \overline{Fig. 3} \end{split}$	[4][5]	-	100	mJ

- Accumulated pulse duration up to 50 hours delivers zero defect ppm Significantly longer life times are achieved by lowering $\rm T_{j}$ and or $\rm V_{GS}$ [1]
- [2]
- Continuous current is limited by package. [3]
- Single-pulse avalanche rating limited by maximum junction temperature of 175 °C. [4]
- [5] Refer to application note AN10273 for further information.

 $V_{GS} \ge 5V$

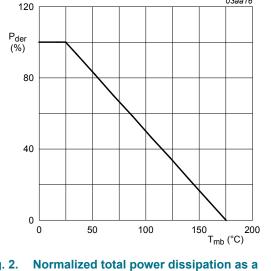
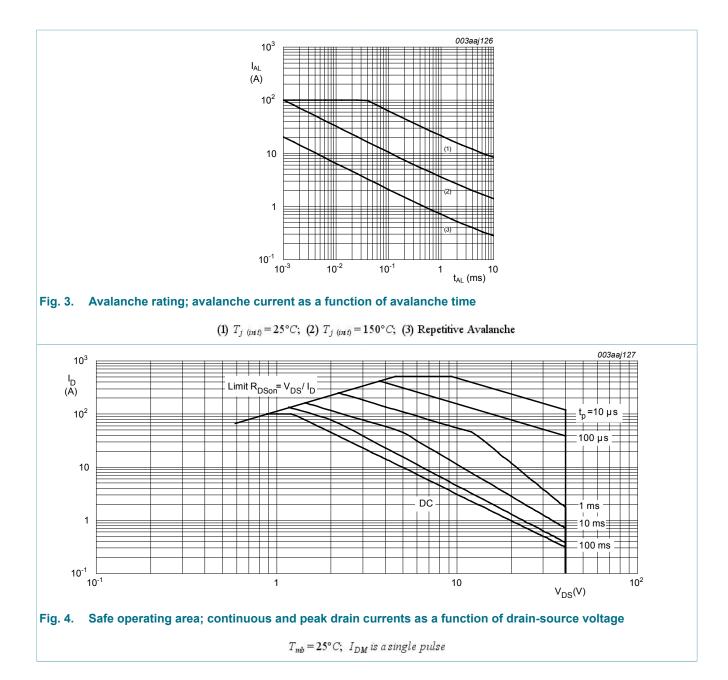
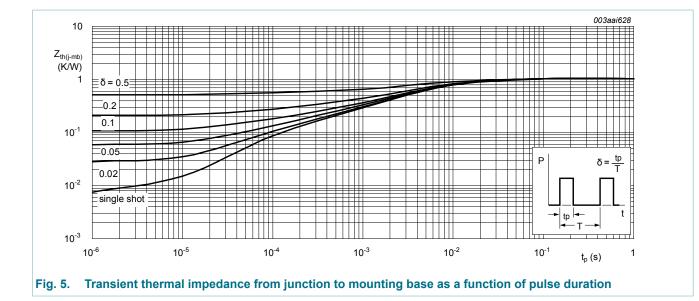



Fig. 2. function of mounting base temperature

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100 \%$$

BUK9Y4R4-40E

N-channel 40 V, 4.4 mΩ logic level MOSFET in LFPAK56



9. Thermal characteristics

Table 6. The	rmal characteristics					
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _{th(j-mb)}	thermal resistance from junction to mounting base	Fig. 5	-	-	1.02	K/W

BUK9Y4R4-40E

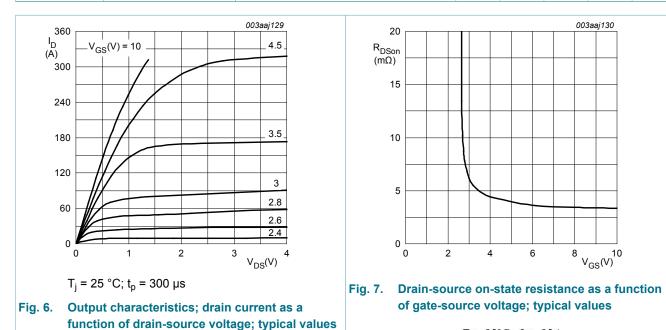
N-channel 40 V, 4.4 mΩ logic level MOSFET in LFPAK56

10. Characteristics

Parameter	Conditions	Min	Тур	Max	Unit
cteristics					
drain-source	I_D = 250 µA; V_{GS} = 0 V; T_j = 25 °C	40	-	-	V
breakdown voltage	$I_D = 250 \ \mu A; V_{GS} = 0 \ V; T_j = -55 \ ^{\circ}C$	36	-	-	V
gate-source threshold voltage	I _D = 1 mA; V _{DS} = V _{GS} ; T _j = 25 °C; Fig. 9; Fig. 10	1.4	1.7	2.1	V
	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = -55 \text{ °C};$ Fig. 9	-	-	2.45	V
	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 175 \text{ °C};$ Fig. 9	0.5	-	-	V
drain leakage current	V_{DS} = 40 V; V_{GS} = 0 V; T_j = 25 °C	-	0.07	10	μA
	V _{DS} = 40 V; V _{GS} = 0 V; T _j = 175 °C	-	-	500	μA
gate leakage current	V_{GS} = 10 V; V_{DS} = 0 V; T_j = 25 °C	-	2	100	nA
	V_{GS} = -10 V; V_{DS} = 0 V; T_j = 25 °C	-	2	100	nA
drain-source on-state	V_{GS} = 5 V; I _D = 25 A; T _j = 25 °C; <u>Fig. 11</u>	-	3.7	4.4	mΩ
resistance	V _{GS} = 10 V; I _D = 25 A; T _j = 25 °C; Fig. 11	-	3.1	3.7	mΩ
	V _{GS} = 5 V; I _D = 25 A; T _j = 175 °C; Fig. 11; Fig. 12	-	-	8.8	mΩ
aracteristics	· · · ·				
total gate charge	I _D = 25 A; V _{DS} = 32 V; V _{GS} = 5 V;	-	26.8	-	nC
gate-source charge	T _j = 25 °C; <u>Fig. 13; Fig. 14</u>	-	7.7	-	nC
	acteristics drain-source breakdown voltage gate-source threshold voltage drain leakage current gate leakage current gate leakage current drain-source on-state resistance arz-teristics total gate charge	Intervisiticsdrain-source breakdown voltageID = 250 μ A; VGS = 0 V; Tj = 25 °CID = 250 μ A; VGS = 0 V; Tj = -55 °CID = 250 μ A; VGS = 0 V; Tj = -55 °Cgate-source threshold voltageID = 1 mA; VDS = VGS; Tj = 25 °C; Fig. 9; Fig. 10ID = 1 mA; VDS = VGS; Tj = -55 °C; Fig. 9ID = 1 mA; VDS = VGS; Tj = -55 °C; Fig. 9ID = 1 mA; VDS = VGS; Tj = 175 °C; Fig. 9ID = 1 mA; VDS = VGS; Tj = 175 °C; Fig. 9ID = 1 mA; VDS = VGS; Tj = 175 °CVDS = 40 V; VGS = 0 V; Tj = 25 °CVDS = 40 V; VGS = 0 V; Tj = 25 °CVDS = 40 V; VDS = 0 V; Tj = 25 °CVGS = 10 V; VDS = 0 V; Tj = 25 °CVGS = -10 V; VDS = 0 V; Tj = 25 °CVGS = -10 V; VDS = 0 V; Tj = 25 °CVGS = 5 V; ID = 25 A; Tj = 25 °C; Fig. 11VGS = 10 V; VDS = 0 V; Tj = 25 °C; Fig. 11VGS = 5 V; ID = 25 A; Tj = 25 °C; Fig. 11VGS = 5 V; ID = 25 A; Tj = 25 °C; Fig. 11ID = 25 A; VDS = 32 V; VGS = 5 V; TJ = 25 °C; Fig. 11; Fig. 12aracteristics	Interistics drain-source breakdown voltage I _D = 250 μ A; V _{GS} = 0 V; T _j = 25 °C 40 I _D = 250 μ A; V _{GS} = 0 V; T _j = -55 °C 36 gate-source threshold voltage I _D = 1 mA; V _{DS} = V _{GS} ; T _j = 25 °C; Fig. 9; Fig. 10 1.4 I _D = 1 mA; V _{DS} = V _{GS} ; T _j = -55 °C; Fig. 9 - I _D = 1 mA; V _{DS} = V _{GS} ; T _j = -55 °C; Fig. 9 - I _D = 1 mA; V _{DS} = V _{GS} ; T _j = 175 °C; Fig. 9 0.5 drain leakage current V _{DS} = 40 V; V _{GS} = 0 V; T _j = 25 °C - V _{DS} = 40 V; V _{GS} = 0 V; T _j = 25 °C - gate leakage current V _{GS} = 10 V; V _{DS} = 0 V; T _j = 25 °C - V _{GS} = -10 V; V _{DS} = 0 V; T _j = 25 °C - - V _{GS} = 5 V; I _D = 25 A; T _j = 25 °C; Fig. 11 - - V _{GS} = 5 V; I _D = 25 A; T _j = 25 °C; Fig. 11 - - V _{GS} = 5 V; I _D = 25 A; T _j = 175 °C; Fig. 111 - - V _{GS} = 5 V; I _D = 25 A; T _j = 175 °C; Fig. 111 - - V _{GS} = 5 V; I _D = 25 A; T _j = 175 °C; Fig. 11 - - V _{GS} = 5 V; I _D = 25 A; T _j = 175 °C; Fig. 11 - - V _{GS} = 5 V; I _D = 25 A; T _j = 175 °C; Fig. 11 - -	$ \begin{array}{ c c c c c c c } \mbox{cteristics} & I_D = 250 \ \mu\text{A}; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^{\circ}\text{C} & 40 & - \\ \hline I_D = 250 \ \mu\text{A}; \ V_{GS} = 0 \ V; \ T_j = -55 \ ^{\circ}\text{C} & 36 & - \\ \hline I_D = 250 \ \mu\text{A}; \ V_{GS} = 0 \ V; \ T_j = -55 \ ^{\circ}\text{C} & 36 & - \\ \hline I_D = 250 \ \mu\text{A}; \ V_{DS} = V_{GS}; \ T_j = 25 \ ^{\circ}\text{C}; & 1.4 & 1.7 \\ \hline I_D = 1 \ \text{mA}; \ V_{DS} = V_{GS}; \ T_j = -55 \ ^{\circ}\text{C}; & - & - \\ \hline I_D = 1 \ \text{mA}; \ V_{DS} = V_{GS}; \ T_j = -55 \ ^{\circ}\text{C}; & - & - \\ \hline I_D = 1 \ \text{mA}; \ V_{DS} = V_{GS}; \ T_j = 175 \ ^{\circ}\text{C}; & 0.5 & - \\ \hline I_D = 1 \ \text{mA}; \ V_{DS} = V_{GS}; \ T_j = 175 \ ^{\circ}\text{C}; & 0.5 & - \\ \hline I_D = 1 \ \text{mA}; \ V_{DS} = 40 \ V; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^{\circ}\text{C} & - & 0.07 \\ \hline V_{DS} = 40 \ V; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^{\circ}\text{C} & - & 2 \\ \hline V_{GS} = -10 \ V; \ V_{DS} = 0 \ V; \ T_j = 25 \ ^{\circ}\text{C} & - & 2 \\ \hline V_{GS} = -10 \ V; \ V_{DS} = 0 \ V; \ T_j = 25 \ ^{\circ}\text{C} & - & 2 \\ \hline V_{GS} = -10 \ V; \ V_{DS} = 0 \ V; \ T_j = 25 \ ^{\circ}\text{C} & - & 2 \\ \hline V_{GS} = -10 \ V; \ V_{DS} = 0 \ V; \ T_j = 25 \ ^{\circ}\text{C} & - & 2 \\ \hline V_{GS} = -10 \ V; \ V_{DS} = 0 \ V; \ T_j = 25 \ ^{\circ}\text{C} & - & 2 \\ \hline V_{GS} = -10 \ V; \ V_{DS} = 0 \ V; \ T_j = 25 \ ^{\circ}\text{C} & - & 2 \\ \hline V_{GS} = -10 \ V; \ V_{DS} = 0 \ V; \ T_j = 25 \ ^{\circ}\text{C} & - & 2 \\ \hline V_{GS} = 10 \ V; \ V_DS = 0 \ V; \ T_j = 25 \ ^{\circ}\text{C} & - & 2 \\ \hline V_{GS} = 10 \ V; \ I_D = 25 \ \text{A}; \ T_j = 25 \ ^{\circ}\text{C} & - & 2 \\ \hline V_{GS} = 10 \ V; \ I_D = 25 \ \text{A}; \ T_j = 25 \ ^{\circ}\text{C} & - & 2 \\ \hline V_{GS} = 10 \ V; \ I_D = 25 \ \text{A}; \ T_j = 25 \ ^{\circ}\text{C} & - & & 2 \\ \hline V_{GS} = 5 \ V; \ I_D = 25 \ \text{A}; \ T_j = 175 \ ^{\circ}\text{C} & - & & - \\ \hline T_{GS} = 11 \ V; \ V_{GS} = 5 \ V; \ T_j = 25 \ ^{\circ}\text{C} & - & & - \\ \hline T_{GS} = 11 \ V; \ V_{DS} = 32 \ V; \ V_{GS} = 5 \ V; \\ T_{GS} = 5 \ V; \ T_{GS} = 5 \ V; \ T_{S} = 25 \ ^{\circ}\text{C} & - \\ \hline T_{S} = 25 \ ^{\circ}\text{C} & T_{S} = 14 \\ \hline \ T_{S} = 10 \ V_{S} = 10 \ $	

BUK9Y4R4-40E

nC


16.5

-

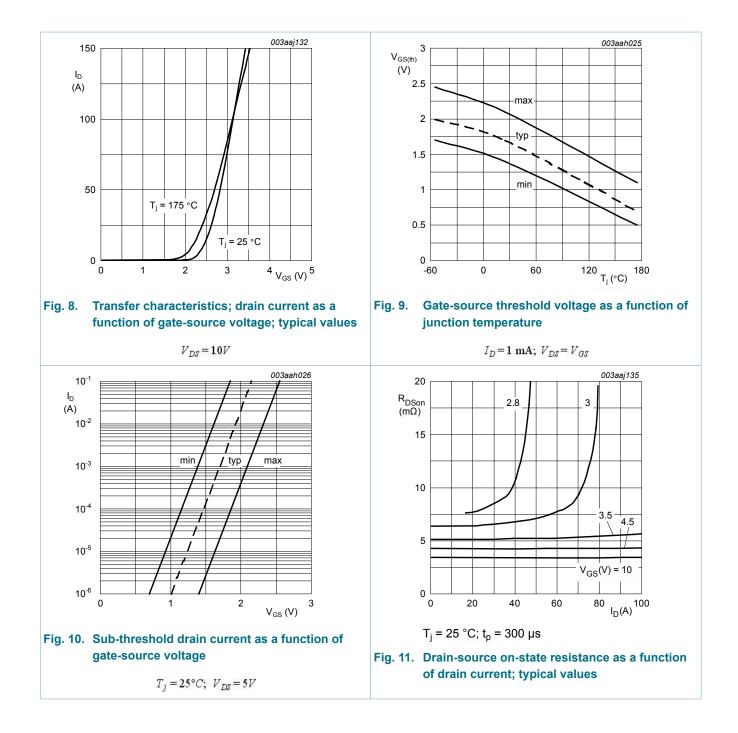
-

N-channel 40 V, 4.4 m Ω logic level MOSFET in LFPAK56

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
Q _{GD}	gate-drain charge			-	8.7	-	nC
C _{iss}	input capacitance	V_{GS} = 0 V; V_{DS} = 25 V; f = 1 MHz;		-	3058	4077	pF
C _{oss}	output capacitance	T _j = 25 °C; <u>Fig. 15</u>		-	422	506	pF
C _{rss}	reverse transfer capacitance			-	190	260	pF
t _{d(on)}	turn-on delay time	V_{DS} = 30 V; R _L = 1.2 Ω; V _{GS} = 5 V; R _{G(ext)} = 5 Ω; T _j = 25 °C		-	16	-	ns
t _r	rise time			-	31	-	ns
t _{d(off)}	turn-off delay time			-	36	-	ns
t _f	fall time	-		-	25	-	ns
Source-dra	iin diode						
V _{SD}	source-drain voltage	I_{S} = 25 A; V_{GS} = 0 V; T_{j} = 25 °C; <u>Fig. 16</u>		-	0.83	1.2	V
t _{rr}	reverse recovery time	I_{S} = 20 A; dI _S /dt = -100 A/µs; V _{GS} = 0 V;		-	23.6	-	ns

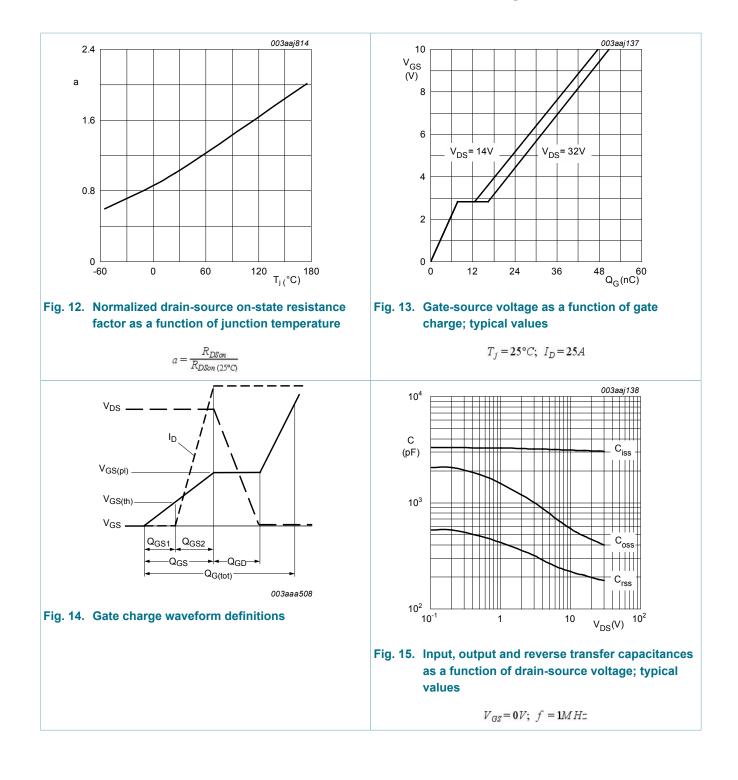
V_{DS} = 25 V; T_i = 25 °C

 $T_j = 25^{\circ}C; \ I_D = 25A$

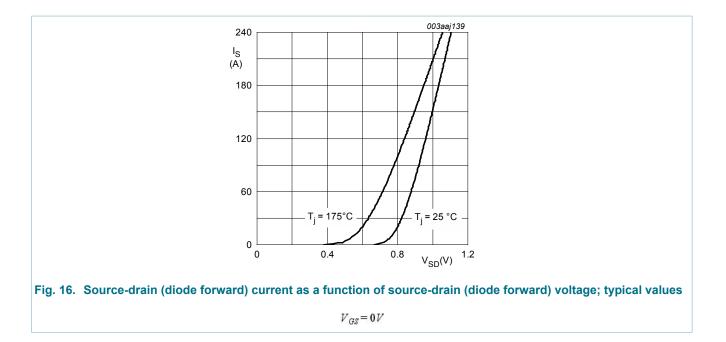

BUK9Y4R4-40E

Qr

recovered charge


BUK9Y4R4-40E

N-channel 40 V, 4.4 m Ω logic level MOSFET in LFPAK56


NXP Semiconductors

N-channel 40 V, 4.4 mΩ logic level MOSFET in LFPAK56

BUK9Y4R4-40E

N-channel 40 V, 4.4 mΩ logic level MOSFET in LFPAK56

N-channel 40 V, 4.4 mΩ logic level MOSFET in LFPAK56

11. Package outline

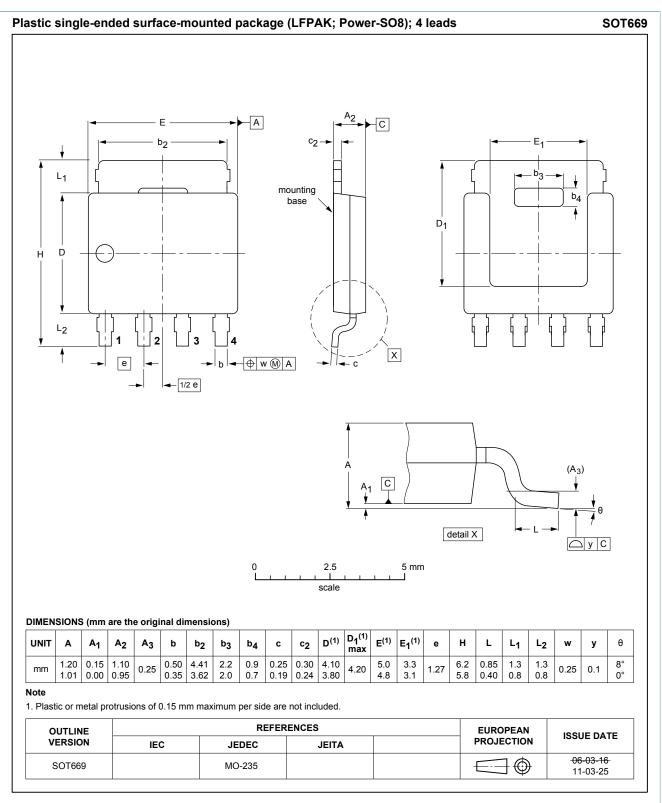


Fig. 17. Package outline LFPAK; Power-SO8 (SOT669)

© NXP B.V. 2013. All rights reserved

N-channel 40 V, 4.4 mΩ logic level MOSFET in LFPAK56

12. Legal information

12.1 Data sheet status

Document status [1][2]	Product status [<u>3]</u>	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nxp.com</u>.

12.2 Definitions

Preview — The document is a preview version only. The document is still subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

12.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

N-channel 40 V, 4.4 mΩ logic level MOSFET in LFPAK56

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

12.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV, FabKey, GreenChip, HiPerSmart, HITAG, I²C-bus logo, ICODE, I-CODE, ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse, QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET, TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V.

HD Radio and **HD Radio** logo — are trademarks of iBiquity Digital Corporation.

N-channel 40 V, 4.4 mΩ logic level MOSFET in LFPAK56

13. Contents

1	General description	1
2	Features and benefits	1
3	Applications	1
4	Quick reference data	1
5	Pinning information	2
6	Ordering information	2
7	Marking	2
8	Limiting values	2
9	Thermal characteristics	4
10	Characteristics	5
11	Package outline	10
12	Legal information	11
12.1	Data sheet status	11
12.2	Definitions	11
12.3	Disclaimers	11
12.4	Trademarks	12

© NXP B.V. 2013. All rights reserved

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 20 February 2013