

MECHANICAL DATA Dimensions in mm(inches)

HIGH CURRENT NPN SILICON TRANSISTOR

APPLICATIONS

FAST SWITCHING

HIGH PULSE POWER

FEATURES

- POWER SWITCHING CIRCUITS
- MOTOR CONTROL

Pin 1 = Base

ase Pin 2 = Emitter Case = Collector

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

V _{CBO}	Collector – Base Voltage (I _E = 0V)	350V
V_{CEO}	Collector – Emitter Voltage ($I_B = 0V$)	250V
V_{EBO}	Collector – Emitter Voltage ($I_C = 0V$)	10V
I _C	Collector Current	60A
I _{CM}	Peak Collector Current (t _p = 10 ms)	80A
I _B	Base Current	16A
P _{tot}	Total Power Dissipation at $T_{case} \le 25^{\circ}C$	350W
T _{stg} ,	Storage Temperature	-65°C to +200°C
Т _ј	Max. Operating Junction Temperature	200°C
$R_{ extsf{ heta}JC}$	Junction to Case Thermal Resistance	0.5°C/W

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

BUR52

BUR52

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

	Parameter	Test	Conditions	Min.	Тур.	Max.	Unit
V _{(BR)CEO*}	Collector - Emitter Breakdown Voltage	I _C = 200mA	I _B = 0	250			V
V _{(BR)EBO}	Emitter – Base Breakdown Voltage	I _C = 0	I _E = 10mA	10			V
I _{CEO}	Collector Emitter Cut-off Current	V _{CE} = 250V	I _B = 0			1.0	mA
I _{CBO}	Collector -Base Cut-off Current	V _{CE} = 350V	$I_{E} = 0$ $T_{C} = 125^{\circ}C$			0.2 2	mA
I _{EBO}	Emitter-Base Cut-off Current	I _C = 0	$V_{EB} = 7V$			0.2	mA
V _{CE(sat)*}	Collector – Emitter Saturation Voltage	I _C = 25A I _C = 40A	I _B = 2A I _B = 4A		0.7	1.0 1.5	- V
V _{BE(sat)*}	Base – Emitter Saturation Voltage	$I_{\rm C} = 25$ A $I_{\rm C} = 40$ A	$I_{\rm B} = 2A$ $I_{\rm B} = 4A$		1.5	1.8 2	- V
h _{FE}	DC Current Gain	$I_{C} = 5A$ $I_{C} = 40A$	$V_{CE} = 4V$ $V_{CE} = 4V$	20 15		100	
I _{S/b}	Second Breakdown Collector Current	V _{CE} = 20V	t = 1s	17.5			A
f _t	Transition Frequency	I _C = 1.0A f = 1MHz	$V_{CE} = 5V$		10	16	MHz
t _{on}	Turn–On Time	I _C = 40A V _{CC} = 100V	$I_{B} = 4A$		0.3	1.0	
t _f	Fall Time	I _C = 40A I _{B2} - 4A	I _{B1} =4A V _{CC} = 100V		0.2	0.6	μs
t _s	Storage Time	I _C = 40A I _{B2} - 4A	I _{B1} =4A V _{CC} = 100V		1.2	2	

*Pulsed tp =300µs @< 1%

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.