

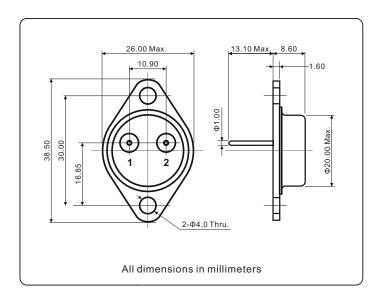
Pb Free Plating Product

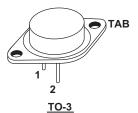
BUX48/BUX48A

175Watt Metal Package NPN Silicon Power Transistor

FEATURES

- Designed for general-purpose switching applications.
- Collector-Emitter saturation voltage V_{CE(sat)} = 1.5 V_{dc} (Max) @ I_C = 8 Adc
- High voltage capability, high current capability


DESCRIPTION


The **BUX48** is a silicon epitaxial-base mesa NPN transistor mounted in JEDEC TO-3 metal case.

It is intended for power switching circuits and industrial applications from single and three-phase mains.

APPLICATIONS

- Switch mode power supplies
- Flyback and forward single transistor low power converters
- Inverters
- Solenoid and Relay drivers
- Motor controls
- Deflection circuits

ABSOLUTE MAXIMUM RATINGS (T _C = 25°C unless otherwise specified)							
SYMBOL	PARAMETER		VAI	UNIT			
STMBOL			BUX48	BUX48A	UNII		
V _{CES}	Collector to emitter voltage (V _{BE} = 0)		850	1000			
V _{CER}	Collector to emitter voltage (R _{BE} = 10Ω)		850	1000			
V _{CEO}	Collector to emitter voltage (I _B = 0)		400	450	V		
V _{EBO}	Emitter to base voltage (I _C = 0)			7	1		
Ic	Collector current		15				
I _{CM}	Collector peak current	30		A			
I _{CP}	Collector peak current, non repetitive (t _p < 20	55					
I _B	Base current	4					
I _{BM}	Base peak current	20					
	Total access disciplation	T _C = 25°C	175		10/		
P _D	Total power dissipation	T _C = 100°C	100		W		
	Derate above 25°C		1.0		W/°C		
T _j	Junction temperature		200				
T _{stg}	Storage temperature		-65 to 200		°C		
TL	Maximum lead temperature for soldering purp from case for 5 seconds	275					

Rev.05 Page 1/8

BUX48/BUX48A

THERMAL CHARACTERISTICS (T _C = 25°C unless otherwise specified)					
SYMBOL	PARAMETER	VALUE	UNIT		
R _{th(j-c)}	Thermal resistance, junction to case	1.0	°C/W		

ELECTRI	CAL CHARACTERISTICS (T _C = 2	5°C unless otherwise specified)				
SYMBOL	PARAMETER	CONDITIONS			MAX	UNIT
OFF CHA	ARACTERISTICS					
	Collector cutoff current (V _{BE} = 0)	V _{CE} = rated V _{CES}			200	μA
I _{CES}	Collector cutoff current (VBE - 0)	V _{CE} = rated V _{CES} , T _C = 125°C			2.0	mA
1		V _{CE} = rated V _{CER}			500	μA
I _{CER}	Collector cutoff current ($R_{BE} = 10\Omega$)	V _{CE} = rated V _{CER} , T _C = 125°C			4	mA
I _{EBO}	Emitter cutoff current	V _{EB} = 5V, I _C = 0	= 5V, I _C = 0		1.0	mA
\/ *		L = 200 A L = 0 L = 25 L	BUX48	400		
V _{CEO(SUS)} *	Collector to emitter sustaining voltage	$I_C = 200 \text{mA}, I_B = 0, L = 25 \text{mH}$	BUX48A	450		
	Collector to emitter voltage		BUX48	850		V
V _{CES}		V _{BE} = 0	BUX48A	1000		
V _{EBO}	Emitter to base voltage	I _C = 0, I _E = 50mA	1		30	
ON CHAI	RACTERISTICS				1	
		I _C = 10A, I _B = 2A			1.5	V
	Collector to emitter saturation voltage	I _C = 15A, I _B = 4A	BUX48		3.5	
V _{CE(sat)} *		I _C = 15A, I _B = 3A			5	
		I _C = 8A, I _B = 1.6A	DUVAGA		1.5	
		I _C = 12A, I _B = 2.4A	BUX48A		5	
\/ *	Base to emitter saturation voltage	I _C = 10A, I _B = 2A	BUX48		1.6	- V
V _{BE(sat)} *		I _C = 8A, I _B = 1.6A	BUX48A		1.6	
h _{FE}	DC ourrent acin	I _C = 10A, V _{CE} = 5V	BUX48	8		
	DC current gain	I _C = 8A, V _{CE} = 5V	BUX48A	8		
O DYNAMI	C CHARACTERISTICS					
C _{ob}	Output capacitance	V _{CB} = 10V, I _E = 0, f _{test} = 1 MHz			350	pF

^{*}Pulsed : Pulse duration = 300 μ s, duty cycle \leq 2%, V_{C1} =300V, $V_{BE(off)}$ = 5V, L_{C} = 180 μ H

Rev.05 Page 2/8

RESISTI	/E SWITCHING TIMES					
SYMBOL	PARAMETER	CONDITIONS			MAX	UNIT
t _{on}	Turn-on time	$V_{CC} = 300V, I_C = 10A, I_{B1} = 2A$	BUX48		1	
		V _{CC} = 300V, I _C = 8A, I _{B1} = 1.6A	BUX48A		1	
t _d	Delay time	V _{CC} = 300V, I _C = 10A, I _{B1} = 2A	BUX48		0.2	
ra .	Delay tille	$V_{CC} = 300V, I_C = 8A, I_{B1} = 1.6A$	BUX48A		0.2	
+	Rise time	$V_{CC} = 300V$, $I_C = 10A$, $I_{B1} = -I_{B2} = 2A$	BUX48		0.7	μs
t _r		$V_{CC} = 300V$, $I_C = 8A$, $I_{B1} = -I_{B2} = 1.6A$	BUX48A		0.7	μο
t _s	Storage time	$V_{CC} = 300V$, $I_C = 10A$, $I_{B1} = -I_{B2} = 2A$	BUX48		2	
		$V_{CC} = 300V$, $I_C = 8A$, $I_{B1} = -I_{B2} = 1.6A$	BUX48A		2	
t _f	Fall time	$V_{CC} = 300V$, $I_C = 10A$, $I_{B1} = -I_{B2} = 2A$	BUX48		0.4	
		V _{CC} = 300V, I _C = 8A, I _{B1} = -I _{B2} = 1.6A	BUX48A		0.4	

 $^{^*}V_{BE}$ = -5V, duty cycle = 2%, t_p = 30 μs

INDUCTIVE SWITCHING TIMES								
SYMBOL	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNIT
t _s	Storage time	$V_{CC} = 300V, I_C = 10A, L_B = 3\mu H$ $I_{B1} = 2A, V_{BE} = -5V$	T _C = 25°C	- BUX48		1.3		μs μs
			T _C =125°C				2.5	
		$V_{CC} = 300V, I_C = 8A, L_B = 3\mu H$ $I_{B1} = 1.6A, V_{BE} = -5V$	T _C = 25°C	BUX48A		1.5		
			T _C =125°C				2.5	
t _f	Fall time	V _{CC} = 300V, I _C = 10A, L _B = 3μH I _{B1} = 2A, V _{BE} = -5V	T _C = 25°C	- BUX48 -		0.10		
			T _C =125°C				0.4	
		$V_{CC} = 300V, I_C = 8A, L_B = 3\mu H$ $I_{B1} = 1.6A, V_{BE} = -5V$	T _C = 25°C	- BUX48A -		0.15		
			T _C =125°C				0.4	

^{*}Duty cycle = 2%, t_p = 30 μs

DC CHARACTERISTICS

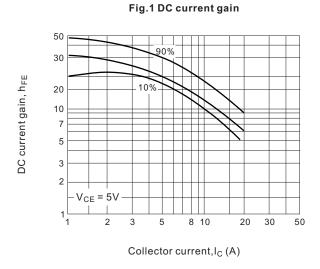


Fig.2 Collector saturation region

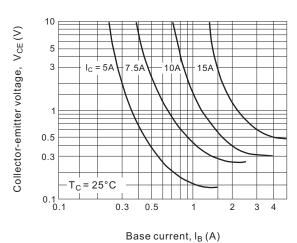


Fig.3 Collector-Emitter saturation voltage

Collector-Emitter voltage, $V_{CE}(V)$ $\beta_f = 5$ 3 2 0.7 0.5 0.3 0.2 0.1 2 5 7 20 30 50 Collector current, I_C (A)

Fig.4 Base-Emitter voltage

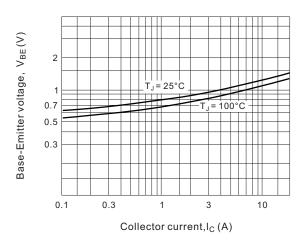


Fig.5 Collector cutoff region

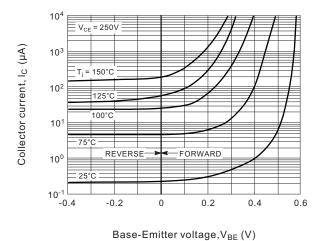
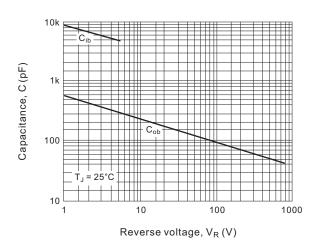



Fig.6 Capacitance

31, BE()

Rev.05 Page 4/8

Table.1 Test Conditions for Dynamic Performance

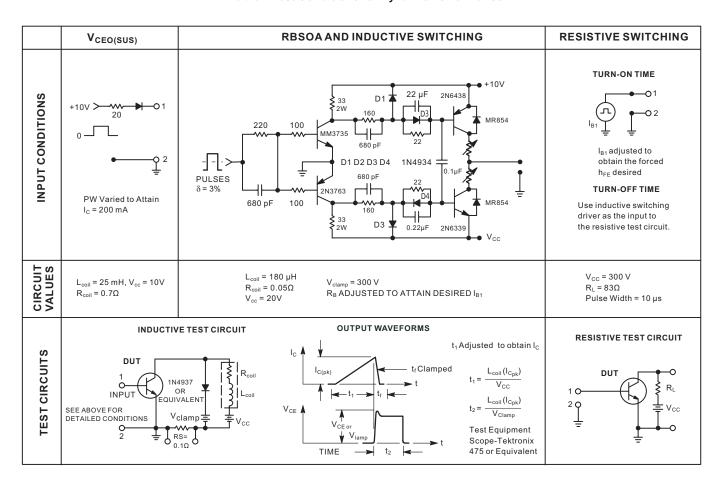


Fig.7 Inductive switching measurements

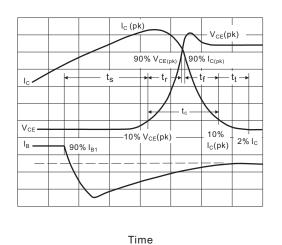
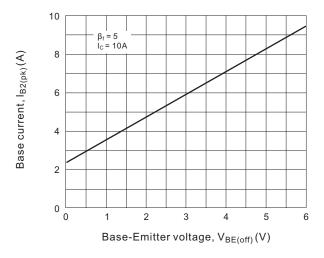



Fig.8. Peak-Reverse current

Rev.05 Page 5/8

SWITCHING TIMES NOTE

In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time, For this reason, the following new terms have been defined.

t_s = Voltage storage time, 90% I_{B1} to 10% V_{clamp}

t_r = Voltage rise time, 10-90% V_{clamp}

tf = Current fall time, 90-10% I_C

 t_t = Current tail, 10-2% I_C

 t_C = Crossover time, 10% V_{clamp} to 10% I_C

An enlarged portion of the inductive switching waveforms is shown in Fig.7 to aid in the visual identity of these terms.

For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obatined using the standard equation from AN-222:

$$P_{SWT} = \frac{1}{2} V_{cc} \cdot I_c \cdot (t_c) f$$

In general, $t_r + t_f = t_c$. However, at lower test currents this relationship may not be valid.

As is common with most switching transistors, resistive switching is specified at 25°C and has become a benchmak for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (t_C and t_S) which are guaranteed at 100°C.

INDUCTIVE SWITCHING

Fig.9 Storage time, t_S

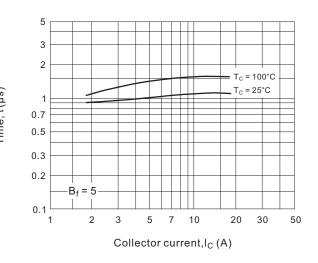


Fig. 10 Crossover and fall times

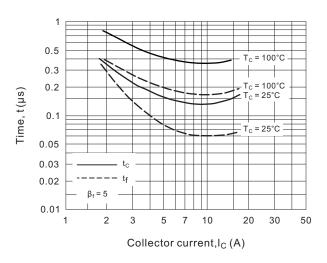


Fig.11a Turn-Off times versus forced gain

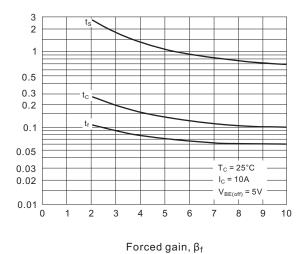
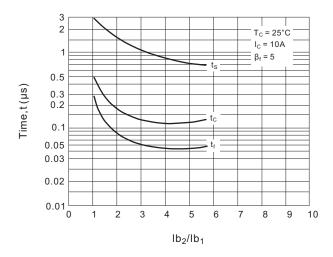
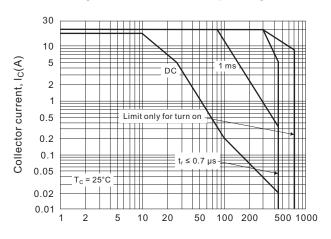



Fig.11b. Turn-Off times versus Ib₂/Ib₁



Rev.05 Page 6/8

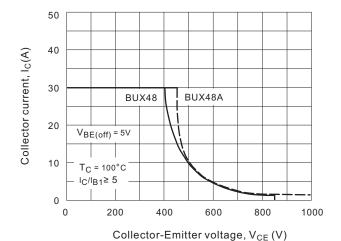

The safe operating area figures 12 and 13 are specified for these devices under the test conditions shown.

Fig.12 Forward bias safe operating area

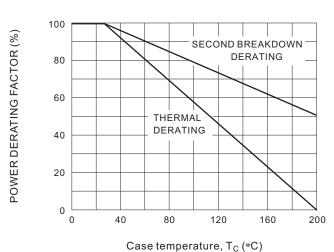
Collector-Emitter voltage, V_{CE} (V)

Fig.13 Reverse bias safe operating area

SAFE OPERATING AREA INFORMATION

FORWARD BIAS

There are two limitations on the power handing ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{\hbox{\scriptsize C-V}}$ limits of the transistor that must be observed for reliable operation:i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

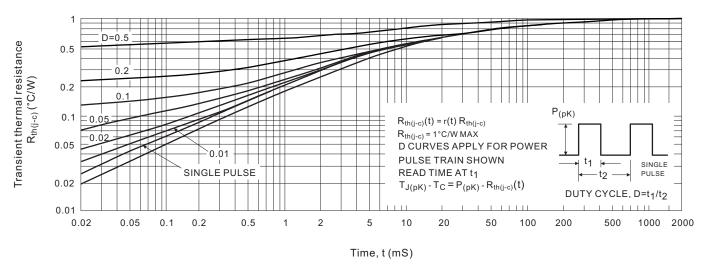

The data of Fig.12 is based on T_C =25°C; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C \ge 25$ °C. Second breakdown limitations do not derate the voltages shown on Fig.12 may be found at any case temperature by using the appropriate curve on Fig.14

 $T_{\rm j}$ (pk) may be caluclated from the data in Fig.11 at high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

REVERSE BIAS

For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe leve for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current conditions during reverse biased turn-off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Fig. 13 gives RBSOA characteristics.

Fig.14 Power derating



, , , ,

Rev.05 Page 7/8

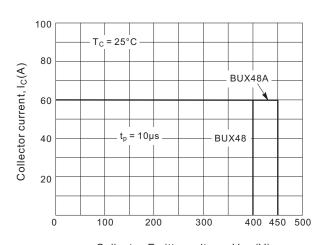
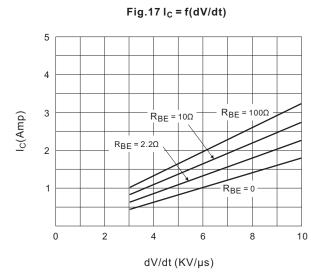


Fig.15 Thermal response



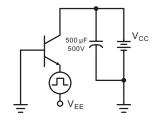
OVERLOAD CHARACTERISTICS

Fig.16 Rated overload safe operating area (OLSOA)

Collector-Emitter voltage, $V_{CE}(V)$

OLSOA

OLSOA applies when maximum collector current is limited and known. A good example is a circuit where an inductor is inserted between the transistor and the bus, which limits the rate of rise of collector current to a known value. If the transistor is then turned off within a specified amount of time, the magnitude of collector current is also known.


Maximum allowable collector-emitter voltage versus collector current is plotted for several pulse widths. (Pulse width is defined as the time lag between the fault condition and the removal of base drieve.) Storage time of the transistor has been factored into the curve. Therefore, with bus voltage and maximum collector current known, Fig.16 defines the maximum time which can be allowed for fault detection and shutdown of base drive.

OLSOA is measured in a common-base circuit (fig. 18) which allows precise definition of collector-emitter voltage and collector current. This is the same circuit that is used to measure forward-bias safe operating area.

Fig. 18 Overload SOA test circuit

Notes:

- ◆ V_{CE} = V_{CC}+ V_{BE}
- Adjust pulsed current source for desired I_C,t_p

Rev.05 Page 8/8