

3300MHz – 3800MHz

BVA3143

Product Description

The BVA3143 is a digitally controlled variable gain amplifier (DVGA) in a 6mm x 6mm LGA package, with a frequency range of 3300 to 3800 MHz and an operating VDD of 5.0V.

BVA3143 is high performance and high dynamic range makes it ideally suited for use in 5G/LTE wireless infrastructure and other high performance wireless RF applications.

The BVA3143 is an integration of a high performance digital 7bit step attenuator (DSA) that provides a 31.75 dB attenuation range in 0.25 dB steps, and high linearity broadband gain block amplifiers featuring high ACP and P1dB.

The BVA3143 digital control interface supports serial programming of the attenuator, and includes the reference gain (max gain, bypass) state on the Parallel programing .

The BVA3143 is integrated of two gain blocks (AMP1, AMP2), a digital step attenuator (DSA) and high linearity amplifier (AMP3).

Implementation requires only a few external components, such as matching capacitors on the Input and Output pins. (Don't need DC Blocking Capacitor)

Figure 1. Functional Block Diagram

Figure 2. Package Type

28-Pin 6mm x 6mm x 0.95mm LGA

Device Features

- 28-Pin 6mm x 6mm x 0.95mm LGA Package
- Integrated Amp1 + DSA + Amp2 + Amp3
- A Single +5.0V supply
- 3300 3800MHz Frequency Range
- 40dB Gain @ 3.55GHz
- 3.9dB Noise Figure at max gain setting @ 3.55GHz
- 26.2dBm Output P1dB @ 3.55GHz
- 42dBm Output IP3 @ 3.55GHz
- ACP at 3.55GHz, 50dBc
 Pre5G 100MBW (±100MHz offset) ≥ 15.5dBm
 LTE 20MBW(FDD E-TM3.1, 100RB, ±20MHz offset) ≥16.5dBm
- Attenuation: 0.25 dB step up to 31.75 dB
- Glitch-less attenuation state transitions
- High attenuation accuracy ±(0.25dB + 5% x Atten) @ 3.3-3.8GHz
- Programming Interface
 Serial / Parallel (Bypass Mode)
- Lead-free/RoHS2-compliant SiP LGA SMT Package

Application

- 5G/4G/3G wireless Infrastructure
- Small Cells
- Repeaters

•website: www.berex.com

3300MHz – 3800MHz

Medium Power Digital Variable Gain Amplifier

Table 1. Electrical Specifications¹

Typical Performance Data @ 25° and VDD = 5.0V, ATT=0dB state (Max. gain) unless otherwise noted. (De-embedded PCB and connector Loss)

Parameter		Condition	Min	Тур	Max	Unit
Operational Frequency Range			3300		3800	MHz
Gain		Attenuation = 0dB, at 3550MHz	37.2	39.7	42.2	dB
Attenuation Co	ontrol range	0.25dB step		0 - 31.75		dB
Attenuation St	ер			0.25		dB
Attenuation Accuracy	3.3GHz - 3.8GHz	Any bit or bit combination	-(0.25 +5% of ATT. setting)		+ (0.25 +5% of ATT. setting)	dB
Detroit la co	Input Return Loss			15		40
Return loss	Output Return Loss	Attenuation = 0dB		15		dB
Output Power for 1dB Compression		Attenuation = 0dB , at 3550MHz		26.2		dBm
Output Third Order Intercept Point		Attenuation = 0dB, at 3550MHz	38	43		dBm
		Pout= +5dBm/tone $ riangle f$ = 1MHz.	50			
Noise Figure		Attenuation = 0dB, at 3550MHz		3.9		dB
Switching time	•	50% CTRL to 90% or 10% RF		275		ns
Supplyvaltage	(1/00)	DSA (SPI)	3.3	5	5.5	V
Supply voltage	(VDD)	AMP	4.85	5	5.15	V
Supply Current		AMP1+DSA+AMP2+AMP3	270	310	350	mA
Control Interface		Serial mode		8		Bit
Control Victoria		Digital input high	1.17		3.6	V
Control Voltag	e	Digital input low	-0.3		0.63	V
Impedance				50		Ω

Specifications and information are subject to change without notice.

BVA3143

3300MHz – 3800MHz

Table 2. Typical RF Performance¹

Parameter	Frequency			Unit
Frequency	3350	3550	3750	MHz
Gain	39.3	39.7	39.3	dB
S11	-16	-18	-16	dB
S22	-16	-15	-14	dB
OIP3 ²	43	43	42	dBm
P1dB	26.7	26.2	25.7	dBm
LTE20M ACP ³	63	63	63	dBc
Pre5G 100M ACP ⁴	57	57	56	dBc
N.F	3.5	3.9	4.2	dB

¹ Device performance _ measured on a BeRex evaluation board at 25°C, VDD=+5.0V, 50 Ω system. measure on Evaluation Board De-embedded PCB and Connector Loss.

2 OIP3 _ measured with two tones at an output of +5 dBm per tone separated by 1MHz.

³ LTE set-up: 3GPP LTE, FDD E-TM3.1, 20MHz BW, ±20MHz offset, PAR 9.81 at 0.01% Prob. Output power 10dBm. Applied the Noise correlation function of Instrument.

4 5G set-up: 3GPP Pre5G, 100MHz BW, ±100MHz offset. Output Power 10dBm. Applied the Noise correlation function of Instrument.

Table 3. Absolute Maximum Ratings¹

Parameter	Min	Тур	Max	Unit
Supply Voltage (VDD)	-0.3		5.5	V
Supply Current			580	mA
Digital input voltage	-0.3		3.6	V
Maximum input power			+20	dBm
Storage Temperature	-55		+150	°C

¹ Operation of this device above any of these parameters may result in permanent damage.

Table 4. Recommended Operating Conditions¹

Parameter	Min	Тур	Max	Unit
Bandwidth	3300		3800	MHz
Supply Voltage (VDD)	4.85	5	5.15	V
Operating Temperature	-40		+105	°c
Thermal Resistance (θ _{Jc})		21.77		°C/W

¹Specifications are not guaranteed over all recommended operating conditions.

BeRex

•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>

Medium Power Digital Variable Gain Amplifier

3300MHz – 3800MHz

Programming Option

Serial / Parallel (Bypass) Selection

Either a Serial or Parallel interface can be used to control the P/S Pin. The P/S bit provides the selection, with P/S = HIGH selecting the Serial interface and P/S = LOW selecting the Parallel interface (Bypass Mode, Max Gain State).

Serial Interface

The Serial interface is an 8-bit Serial-In, Parallel-Out shift register buffered by a transparent latch. The 8-bits make up the Attenuation Word that controls the DSA. Figure 4 illustrates an example timing diagram for programming a state.

The Serial interface is controlled using three CMOS compatible signals: SI, Clock (CLK) and LE. The SI and CLK inputs allow data to be serially entered into the shift register. Serial data is clocked in LSB first.

The shift register must be loaded while LE is held LOW to prevent the attenuator value from changing as data is entered. The LE input should then be toggled HIGH and brought LOW again, latching the new data into the DSA. The Attenuation Word truth table is listed in Table 5. A programming example of the serial register is illustrated in Figure 3. The Serial timing diagram is illustrated in Figure 4.

		Attonuation							
D7 (MSB)	D6	D5	D4	D3	D2	D1	D0 (LSB)	setting	
L	L	L	L	L	L	L	L	Max. Gain	
L	L	L	L	L	L	L	Н	0.25 dB	
L	L	L	L	L	L	Н	L	0.5 dB	
L	L	L	L	L	н	L	L	1 dB	
L	L	L	L	н	L	L	L	2 dB	
L	L	L	н	L	L	L	L	4 dB	
L	L	н	L	L	L	L	L	8 dB	
L	Н	L	L	L	L	L	L	16 dB	
L	Н	н	Н	Н	н	н	н	31.75 dB	

Table 5. Serial Attenuation word Truth Table

Power-up Control Settings

The BVA3143 will always initialize to the maximum attenuation setting (Atten=31.75dB) on power-up for the Serial mode and will remain in this setting until the user latches in the next programming word.

Figure 3. Serial Register Map

The attenuation word is derived directly from the value of the attenuation state. To find the attenuation word, multiply the value of the state by four, then convert to binary.

For example, to program the 12.5dB state;

4 x 12.5 = 50 50 → 00110010

Serial Input : 00110010

BeRex

•website: <u>www.berex.com</u>

•email: sales@berex.com

Specifications and information are subject to change without notice.

3300MHz - 3800MHz

Medium Power Digital Variable Gain Amplifier

Figure 4. Serial Interface Timing Diagram

Table 6. Serial Interface AC Characteristics

VDD= 5.0V with DSA only, -40°C \leq TA \leq 105°C, unless otherwise specified

Symbol	Parameter	Min	Max	Unit
Fclk	Serial data clock frequency		10	MHz
Тсікн	Serial clock HIGH time	30		ns
TCLKL	Serial clock LOW time	30		ns
TLESU	Last Serial clock rising edge setup time to Latch Enable rising edge	10		ns
TLEPW	Latch Enable minimum pulse width	30		ns
Tsisu	Serial data setup time	10		ns
Тѕін	Serial data hold time	10		ns
TDISU	Parallel data setup time	100		ns
Тон	Parallel data hold time	100		ns
TPSSU	Parallel / Serial setup time	100		ns
TPSIH	Parallel / Serial hold time	100		ns
TASU	Address setup time	100		ns
Тан	Address hold time	100		ns
TPD	Digital register delay (internal)		10	ns

BVA3143

Figure 5. Pin Configuration

Table 7. Pin Description

Pin	Pin name	Description
1	LE ¹	Serial Latch Enable Input. When LE is high, latch is clear and content of SPI control the attenuator. When LE is low, data in SPI is latched.
2	DATA	Serial Data Input. The data and clock pins allow the data to be entered serially into SPI and is independent of Latch state.
3	CLK	Serial Clock Input.
4	P/S	The P/S bit provides this selection, P/S=Low selecting the Parallel Interface which is the Max. gain state (Bypass Mode, ATT=0dB) and either P/S=High selecting or floating for the Serial Interface.
6	RF IN	RF Input, matched to 50 ohm. Internally DC blocked.
8	VDD_AMP1/AMP2	Supply Voltage to AMP1 and AMP2. This pin is connected internally to bypass capacitors followed by inductor inside the module.
14	VDD_AMP3	Supply Voltage to AMP3. This pin is connected internally to bypass capacitors followed by inductor inside the module.
16	RF OUT	RF output, matched to 50 ohm. Internally DC blocked.
22	N/C	No connect or open. This pin is not connected.
28	VDD_SPI	SPI and DSA DC supply. This pin is connected to bypass capacitor internally.
5, 7, 9-13, 15 17-21,23-27	GND	RF/DC Ground
Backside Pad	GND	RF/DC Ground

Note: 1. LE must be Pulled-up to 1.17V-3.6V to use the Bypass Mode when P/S = Low (Bypass mode, ATT=0dB)

BeRex

•email: <u>sales@berex.com</u>

Specifications and information are subject to change without notice.

BVA3143

Figure 6. Internal Function Block Diagram

The BVA3143 is integrated of two gain block (AMP1, AMP2), a digital step attenuator (DSA) and high linearity amplifier (AMP3). Additionally, the BVA3143 includes an internal bias and RF matching circuits to improve the RF performance at 3.3GHz - 3.8GHz.

The Internal structure of the Package is shown below.

Medium Power Digital Variable Gain Amplifier

3300MHz - 3800MHz

Typical RF Performance Plot - BVA3143 EVK - PCB

Typical Performance Data @ 25° and VDD = 5.0V unless otherwise noted and RF Circuit

Table 8. Application Circuit

3300MHz – 3800MHz

BVA3143

Typical RF Performance Plot - BVA3143 EVK

Typical Performance Data @ 25° and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Table 9. Typical Performance : 3550MHz

parameter		Typical Values		Units
Frequency	3550	3550	3550	MHz
VDD	4.85	5	5.15	Vdc
Current	290	310	330	mA
Gain	39.6	39.7	39.8	dB
S11	-18	-18	-18	dB
S22	-15	-15	-15	dB
OIP31	42	43	43.5	dBm
P1dB	26	26.2	26.4	dBm
Noise Figure	3.9	3.9	3.9	dB
LTE20MHz ACP ²	63	63	63.5	dBc
Pre5G 100MHz ACP ³	57	57	57.5	dBc

¹ OIP3 _ measured with two tones at an output of 5 dBm per tone separated by 1 MHz.

² LTE set-up: 3GPP LTE, FDD E-TM3.1, 20MHz BW, ±20MHz offset, PAR 9.81 at 0.01% Prob. Output Power 10dBm. Applied the Noise correlation function of Instrument.

³ Pre5G set-up: 3GPP Pre5G, 100MHz BW, ±100MHz offset. Output Power 10dBm. Applied the Noise correlation function of Instrument.

Figure 7. Gain vs Frequency @Max Gain state 43 42 41 40 Gain[dB] 38 32 39 - -36 +25℃ -40°C 35 +85℃ +105°C 34 33 3.65 3.35 3.45 3.5 3.55 3.6 3.7 3.8 3.3 3.4 3.75 Frequency [GHz]

BeRex

Specifications and information are subject to change without notice.

3300MHz – 3800MHz

BVA3143

Typical RF Performance Plot - BVA3143 EVK

Typical Performance Data @ 25° and Vcc = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

0.25dB

31.75dB

Frequency [GHz]

4dB

3.5

Figure 12. Input Return Loss vs Frequency

Figure 14. Output Return Loss vs Frequency @ Min Gain State

Figure 16. Attenuation Error vs Frequency

BeRex

45

40

35

30

20

15

10

5

0

3.3

OdB

2dB

16dB

3.4

Gain [dB] 25

0.5dB

8dB

3.6

Specifications and information are subject to change without notice.

BVA3143

3300MHz - 3800MHz

Typical RF Performance Plot - BVA3143 EVK

Typical Performance Data @ 25° and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Figure 18. Attenuation Error vs Frequency vs Attenuation Settings

Figure 19. OIP3 vs Frequency vs Output Power ATT=0dB (Max Gain), 1MHz interval

Figure 21. OIP3 vs VDD vs Output Power Fo = 3550MHz, ATT=0dB (Max Gain), 1MHz interval

Figure 22. OIP3 vs VDD vs Output Power Fo = 3550MHz, ATT=15dB, 1MHz interval

BeRex

50

48

46

42

40

38

36

34

0 1 2

3

4

OIP3 [dBm] 44

•website: www.berex.com

•email: sales@berex.com

3300MHz – 3800MHz

BVA3143

Typical RF Performance Plot - BVA3143 EVK

Typical Performance Data @ 25° and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Figure 26. OP1dB vs VDD vs Frequency

Figure 28. ACP vs Frequency vs Pout ATT=15dB, Pre5G 100MBW

BeRex

•website: <u>www.berex.com</u>

email: <u>sales@berex.com</u>

Specifications and information are subject to change without notice.

3300MHz - 3800MHz

BVA3143

Typical RF Performance Plot - BVA3143 EVK

Typical Performance Data @ 25° and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

-44

-46

-48

-50

-52

-58

-60

-62

-64

7

8

4.85V

5.15V

9

- 5V

Figure 32. Noise Figure vs Temp vs Frequency @ Max Gain State

11

12

Pout [dBm]

13

14

15

16

10

F0=3550MHz, ATT=15dB, Pre5G 100MBW

-44

-46

-48

-50

-52 ACP [dBc]

-54

-56

-58

-60

-62

-64

7

8

-40°C

+25°C

+85°C

+105°C

9

3300MHz - 3800MHz

BVA3143

-59.7 dBc

Span 490 MHz

Typical RF Performance Plot - BVA3143 EVK

-56.8 dBc

Typical Performance Data @ 25° and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Figure 33. ACP Plot

1 Graph

Scale/Div 10.0 dB

Center 3.55 GHz #Res BW 300 kHz

2 Metrics

-57.2 dBc

Total Car Pwr 10.101 dBm/90.00 MHz Total PSD ----

@ 3550MHz, 10dBm, Pre5G 100MBW

Figure 34. ACP Plot

Figure 35. ACP Plot

@ 3550MHz, 50dBc, LTE20MHz (E-TM1.1 100RB)

BVA3143

Figure 36. Evaluation Board Schematic

Table 10. Bill of material

No.	Ref. Number	Value	Description	Manufacturer
1	R2	100KΩ	Resistor, 0603, Chip, 5%	KOA Speer
2	R3	200ΚΩ	Resistor, 0603, Chip, 5%	KOA Speer
3	R6	0Ω	Jumper Resistor, 0603, Chip	KOA Speer
4	R7	0Ω	Jumper Resistor, 0603, Chip	KOA Speer
5	R8	0Ω	Jumper Resistor, 0603, Chip	KOA Speer
6	C4	100nF	Capacitor, 0402, Chip, 5%	Murata
7	C6	100pF	Capacitor, 0402, Chip, 5%	Murata
8	C7	100nF	Capacitor, 0402, Chip, 5%	Murata
9	C8	100pF	Capacitor, 0402, Chip, 5%	Murata
10	C9	100pF	Capacitor, 0402, Chip, 5%	Murata
11	C10	100nF	Capacitor, 0402, Chip, 5%	Murata
12	C11	1uF	Capacitor, 0603, Chip, 5%	Murata
13	C12	1nF	Capacitor, 0603, Chip, 5%	Murata
14	C13	0.3pF	Capacitor, 0402, Chip, ±0.1pF	Murata
15	C14	0.7pF	Capacitor, 0402, Chip, ±0.1pF	Murata
16	SMA1	SMA	SMA(F) Connector, PCB Mount, PSF-S01-007	Gigalane
17	SAM2	SMA	SMA(F) Connector, PCB Mount, PSF-S01-007	Gigalane
18	J1	20pin	Receptacle Connector, 5-532955-3, Female, RT/A Dual	AMP Connectors
19	J2	3pin	2.54mm Breakaway Male Header, Straight, Black	
20	J9	4pin	2.54mm Breakaway Male Header, Straight, Black	
21	R1,C1,C2,C3,C5	NC	Not connected	

•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>

Rev. 1.2

3300MHz – 3800MHz

Figure 38. Evaluation Board PCB Layer Information

•website: <u>www.berex.com</u>

3300MHz – 3800MHz

BVA3143

3300MHz - 3800MHz

Notes

- 1. All dimensions are in millimeters. Angles are in degrees
- 2. Dimension and tolerancing conform to ASME Y14.5M-1994.

Figure 41. Package Marking Information

•website: <u>www.berex.com</u>

•email: sales@berex.com

Medium Power Digital Variable Gain Amplifier

3300MHz - 3800MHz

Figure 42. Tape and Reel

Lead Plating Finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD Rating :	Class1C
Value :	Passes > 1000V
Test :	Human Body Model (HBM)
Standard :	JEDEC Standard JS-001-2017
ESD Rating :	ClassC3
Value :	Passes > 1000V
Test :	Charged Device Model (CDM)
Standard :	JEDEC Standard JESD22-C101F
MSL Rating:	MSL3 at +260°C convection reflow
Standard :	JEDEC Standard J-STD-020

Proper ESD procedures should be followed when handling the device.

RoHS Compliance

This part is compliant with Restrictions on the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU.

This product also is compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1%(w/w) in each components of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

NATO GAGE Code :

