

3000MHz - 4200MHz

Product Description

The BVA7242N is a digitally controlled variable gain amplifier (DVGA) in a 6mm x 6mm LGA package, with a frequency range of 3GHz to 4.2GHz at VDD of 5.0V.

BVA7242N is a high performance and high dynamic range makes it ideally suited for use in 5G/LTE wireless infrastructure and other high performance wireless RF applications.

The BVA7242N is an integration of a high performance digital 7bit step attenuator (DSA) that provides a 31.75 dB attenuation range in 0.25 dB steps and two amplifiers. Two amplifiers in BVA7242N provide high ACP and P1dB.

The BVA7242N digital control interface supports serial programming of the Step attenuator (DSA) and has a power down feature for power savings with Power Down (P/D) mode.

Implementation requires only a few external components, such as matching capacitors on input and output pins. (No need DC Blocking Capacitors when DC voltage is not presented.)

Figure 1. Functional Block Diagram

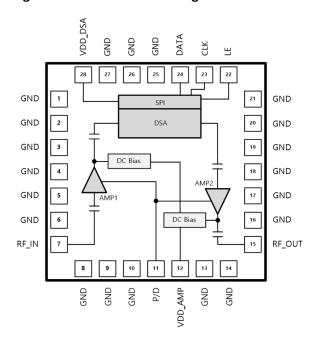


Figure 2. Package Type

28-pin 6mm x 6 mmx 0.95mm LGA

Device Features

- 28-pin 6mm x 6mm x 0.95mm LGA Package
- Integrated AMP1 + DSA + AMP2
- A Single Voltage Supply: +5.0V / 165mA
- 3.0 4.2GHz Frequency Range
- 33.5dB Gain @ 3.6GHz
- Gain Flatness
 Under 1dB @ 800MBW (3.2 4GHz)
- 1.9dB Noise Figure @ 3.6GHz, max gain setting
- 19.6dBm Output P1dB @ 3.6GHz
- High Output IP3
 37.5dBm @3.6GHz, Atten 0dB (Max gain)
 33dBm @3.6GHz, Atten 20dB
- Attenuation: 0 31.75 dB / 0.25 dB step
- Glitch-less attenuation state during transitions
- High attenuation accuracy ±(0.25dB + 5% x ATT. Setting) @ 3.2-4.2GHz
- Serial Programming Interface only
- Power Down Mode (P/D)
- Lead-free/RoHS2-compliant SiP LGA SMT Package

Application

- 5G/4G/3G wireless Infrastructure
- Small Cells
- Repeaters

BeRex ●website: <u>www.berex.com</u> ●email: <u>sales@berex.com</u>

1

3000MHz - 4200MHz

Table 1. Electrical Specifications

Typical Performance Data @ 25°C and VDD = 5.0V, ATT=0dB state (Max. gain) unless otherwise noted. (De-embedded PCB and connector Loss)

Pa	arameter	Condition	Min	Тур	Max	Unit
Operationa	Il Frequency Range		3		4.2	GHz
	Gain	Attenuation = 0dB, @ 3.6GHz	31	33.5	36	dB
		3.2GHz to 4.2GHz		1	1.5	dBpp
Ga	in Flatness	3GHz to 4.2GHz		1.5	2	dBpp
Attenuati	on Control range	0.25dB step		0 - 31.75		dB
Atte	nuation Step			0.25		dB
Attenuation	3.2GHz to 4GHz	Any bit or bit combination	- (0.25 +5% of ATT. setting)		+ (0.25 +5% of ATT. setting)	dB
Accuracy	3GHz to 4.2GHz	Any bit or bit combination	- (0.5 +6% of ATT. setting)		+ (0.5 +6% of ATT. setting)	dB
Return loss	Input Return Loss	Attenuation = 0dB		15		dB
Return 1055	Output Return Loss	Attenuation = odB		10		ив
Output Power	for 1dB Compression	Attenuation = 0dB , @ 3.6GHz		19.6		dBm
		Attenuation = 0dB, @ 3.6GHz Pout= -3dBm/tone \triangle f=100MHz	34	37.5		dBm
Output Third	Order Intercept Point	Attenuation = 20dB, @ 3.6GHz Pout= -3dBm/tone \triangle f=100MHz.		33		dBm
No	ise Figure	Attenuation = 0dB, @ 3.6GHz		1.9		dB
DSA S	witching time	50% CTRL to 90% or 10% RF		275		ns
Power Down	(P/D) Switching time	50% CTRL to 90% or 10% RF		150		ns
S	who welltoge	VDD_DSA	3.3	5	5.5	V
Sup	ply voltage	VDD_AMP	3.3	5	5.25	V
Sup	ply Current	AMP1+DSA+AMP2	135	165	195	mA
Cont	rol Interface	Serial mode		8		Bit
DCA or	ontrol Voltago	Digital input high	1.17		3.6	V
DSA CO	ontrol Voltage	Digital input low	-0.3		0.6	V
n/n	autual Valta	P/D high (Amp Off)	0.8		5	V
P/D 00	ontrol Voltage	P/D low (Amp On)	0		0.5	V
In	npedance			50		Ω

BeRex ●website: <u>www.berex.com</u>

email: sales@berex.com

3000MHz - 4200MHz

Table 2. Typical RF Performance¹

Parameter		Frequency					
Frequency	3	3.2	3.6	4	4.2	GHz	
Gain	32.3	33.2	33.5	32.9	32	dB	
S11	-9.4	-13.5	-21.9	-24.0	-21.3	dB	
S22	-5.8	-8.2	-16.9	-16.4	-11.2	dB	
OIP3 ² (Max Gain, ATT=0dB)	36.9	37.2	37.5	37.5	35.9	dBm	
OIP3 ² (ATT=20dB)	32.1	33.1	33	31.7	30	dBm	
OP1dB	19.4	19.5	19.6	19.2	18.9	dBm	
N.F (Max Gain, ATT=0dB)	1.8	1.8	1.9	1.9	2.2	dB	
N.F (ATT=20dB)	7	6.9	7.1	7.8	8.4	dB	

¹ Device performance measured on a BeRex evaluation board at 25°C, VDD=+5.0V, 50 Ω system. measure on Evaluation Board De-embedded PCB and Connector Loss.

Table 3. Absolute Maximum Ratings¹

Parameter	Min	Тур	Max	Unit
Supply Voltage (VDD)	-0.3		5.5	٧
Supply Current			380	mA
Digital input voltage	-0.3		3.6	٧
Maximum input power			+10	dBm
Storage Temperature	-55		+150	$^{\circ}$
Junction Temperature			+165	℃

 $^{^{\}rm 1}$ Operation of this device above any of these parameters may result in permanent damage.

Table 4. Recommended Operating Conditions¹

Parameter	Min	Тур	Max	Unit
Frequency Range	3		4.2	GHz
Supply Voltage (VDD)	4.75	5	5.25	V
Operating Temperature	-40		+105	°C
$R_{TH}(\theta_{JC})$		26		°C/W

 $^{^{\}rm 1}\,{\rm Specifications}$ are not guaranteed over all recommended operating conditions

BeRex

•website: <u>www.berex.com</u>

●email: sales@berex.com

 $^{^{\}mathbf{2}}$ OIP3 $\,$ measured with two tones at an output of $\,$ -3dBm per tone separated by 100MHz.

3000MHz - 4200MHz

Programming Option

Programming Mode

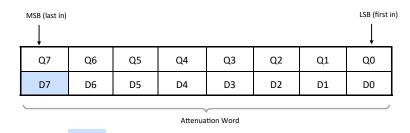
The BVA7242N is only operating in Serial Mode.

Serial Interface

The Serial interface is an 8-bit Serial-In, Parallel-Out shift register buffered by a transparent latch. The 8-bits make up the Attenuation Word that controls the DSA. Figure 4 illustrates an example timing diagram for a programming state.

The Serial interface is controlled by using three CMOS compatible signals: SI (DATA), Clock (CLK) and LE. The SI and CLK inputs allow data to be serially entered into the shift register. Serial data is clocked in LSB first.

The shift register must be loaded while LE is held LOW to prevent the attenuator value from changing as data is entered. The LE input should then be toggled HIGH and brought LOW again, latching the new data into the DSA. The Attenuation Word truth table is listed in Table 5. A programming example of the serial register is illustrated in Figure 3. The Serial timing diagram is illustrated in Figure 4.


Table 5. Serial Attenuation word Truth Table

	Attenuation Word										
D7 (MSB)	D6	D5	D4	D3	D2	D1	D0 (LSB)	Attenuation setting			
L	L	L	L	L	L	L	L	Max. Gain			
L	L	L	L	L	ш	L	Н	0.25 dB			
L	L	L	L	L	ш	Η	Ы	0.5 dB			
L	L	ш	ــا	ш	H	ш	ا ـ	1 dB			
L	L	L	L	Н	L	L	L	2 dB			
L	L	L	Н	L	L	L	L	4 dB			
L	L	Н	L	L	L	L	L	8 dB			
L	Н	L	L	L	L	L	L	16 dB			
L	Н	Н	Н	Н	Н	Н	Н	31.75 dB			

Power-up Control Settings

The BVA7242N will be always initialized to the max. attenuation setting (Atten=31.75dB) on power-up sequence and will remain at the max. attenuation setting until user latches the next programming word.

Figure 3. Serial Register Map

The attenuation word is derived directly from the value of the attenuation state. To find the attenuation word, multiply the value of the state by four, then convert to binary.

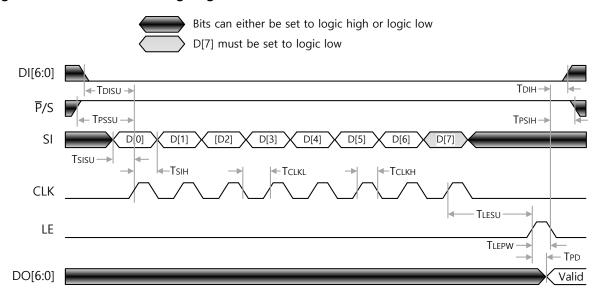
Bit must be set to logic low

For example, to program the 12.5dB state;

 $4 \times 12.5 = 50$ $50 \rightarrow 00110010$

Serial Input: 00110010

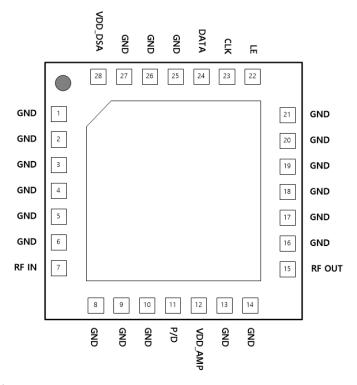
Glitch-less Attenuation State Transitions


The BVA7242N features a novel architecture to provide the best-in-class glitch-less transition behavior when changing attenuation states. When RF input power is applied, the output power spikes are greatly reduced (≤0.3 dB) during attenuation state changes when comparing to previous generations of DSAs.

Rev. 1.2

3000MHz - 4200MHz

Figure 4. Serial Interface Timing Diagram


Table 6. Serial Interface AC Characteristics

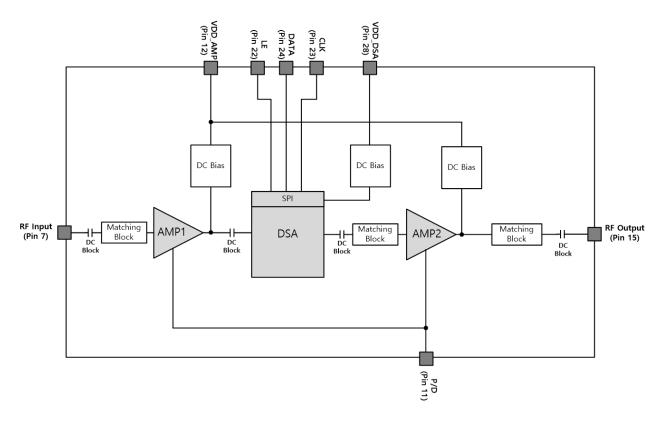
VDD = 5.0V with DSA only, -40° C \leq TA \leq 105°C, unless otherwise specified

Symbol	Parameter	Min	Max	Unit
FCLK	Serial data clock frequency		10	MHz
Тськн	Serial clock HIGH time	30		ns
TCLKL	Serial clock LOW time	30		ns
TLESU	Last Serial clock rising edge setup time to Latch Enable rising edge	10		ns
TLEPW	Latch Enable minimum pulse width	30		ns
T SISU	Serial data setup time	10		ns
T sih	Serial data hold time	10		ns
T DISU	Parallel data setup time	100		ns
Тын	Parallel data hold time	100		ns
T PSSU	Parallel / Serial setup time	100		ns
T PSIH	Parallel / Serial hold time	100		ns
T ASU	Address setup time	100		ns
Тан	Address hold time	100		ns
T PD	Digital register delay (internal)		10	ns

3000MHz - 4200MHz

Figure 5. Pin Configuration

Table 7. Pin Description


Pin	Pin name	Description
1-6, 8-10, 13-14, 16-21, 25-27	GND	RF/DC Ground
7	RF IN	RF Input, matched to 50 ohm. Internally DC blocked.
11	P/D	VDD Power Down control Input. With Logic High(0.8 to 5V), Amplifier is Disabled. With Logic Low(0 to 0.5V), Amplifier is Enabled.
12	VDD_AMP	Supply Voltage to Amplifier (AMP1 and AMP2). This pin is connected internally to bypass capacitors followed by inductor inside the module.
15	RF OUT	RF output, matched to 50 ohm. Internally DC blocked.
22	LE	Serial Latch Enable Input. When LE is high, latch is clear and content of SPI control the attenuator. When LE is low, data in SPI is latched.
23	CLK	Serial Clock Input.
24	DATA	Serial Data Input. The data and clock pins allow the data to be entered serially into SPI and is independent of Latch state.
28	VDD_DSA	SPI and DSA DC supply. This pin is connected to bypass capacitor internally.
Exposed Pad	GND	RF/DC Ground

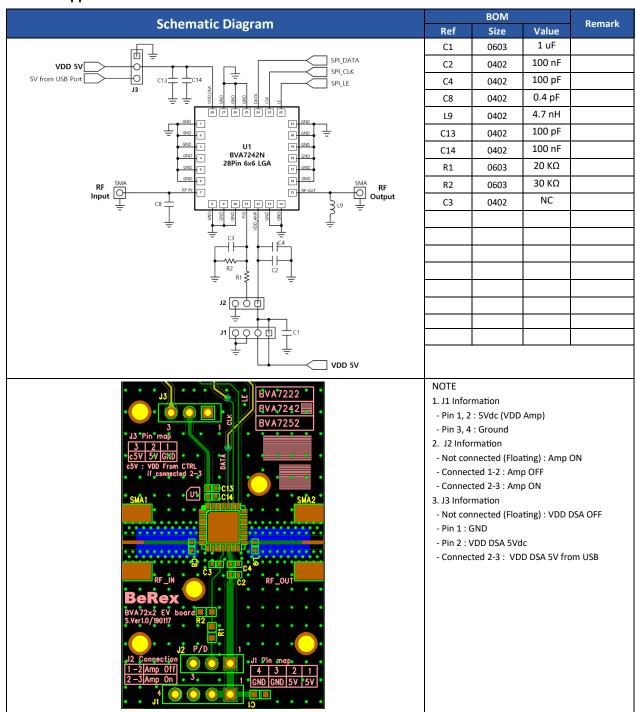
3000MHz - 4200MHz

Figure 6. Internal Function Block Diagram

The BVA7242N is integrated two gain blocks (AMP1, AMP2) and one digital step attenuator (DSA). Additionally, the BVA7242N includes an internal bias circuits and RF Matching to improve the RF performances at 3GHz - 4.2GHz.

The block diagram of BVA7242N is shown below.

Rev. 1.2



3000MHz - 4200MHz

Typical RF Performance - BVA7242N EVK - PCB

Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted .

Table 8. Application Circuit

BeRex

•website: www.berex.com

•email: sales@berex.com

3000MHz - 4200MHz

Typical RF Performance - BVA7242N EVK

Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Table 9. Typical Performance by Temperature: 3.6GHz

Parameter		Typical Values					
Temperature	-40	25	85	105	°C		
VDD	5	5	5	5	Vdc		
Current	173	165	156	152	mA		
Gain	34.8	33.5	32.7	32.3	dB		
S11	-25	-21.5	-27.7	-27.5	dB		
S22	-16.3	-16.5	-18.1	-17.8	dB		
OIP3 ¹	37.2	37.5	37.2	37.1	dBm		
OP1dB	19.3	19.6	20.1	19.9	dBm		
Noise Figure	1.4	1.9	2.3	2.5	dB		

 $^{^{}f 1}$ OIP3 measured with two tones at an output of –3dBm per tone separated by 100MHz.

 $[{]f 2}$ Above test parameters are measured at Max Gain State (ATT=0dB)

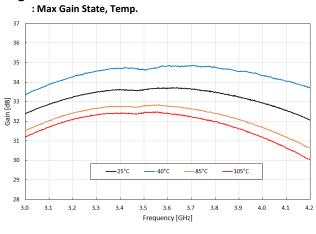


Figure 8. Gain Flatness

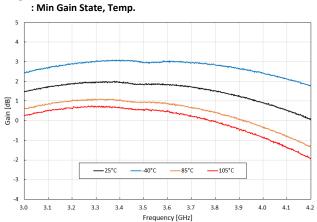


Figure 9. Input Return Loss

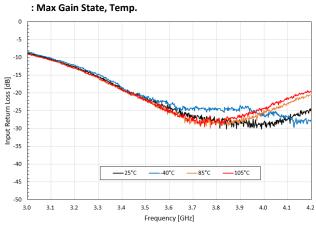
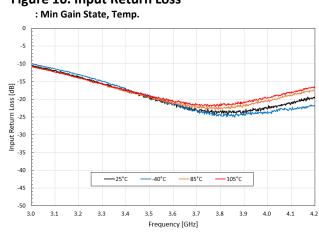



Figure 10. Input Return Loss

ex •website: www.berex.com

•email: sales@berex.com

3000MHz - 4200MHz

Typical RF Performance - BVA7242N EVK

Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Figure 11. Output Return Loss

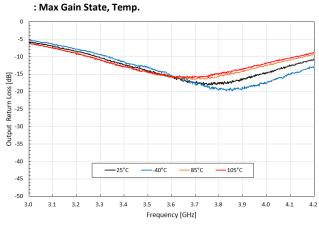


Figure 12. Output Return Loss

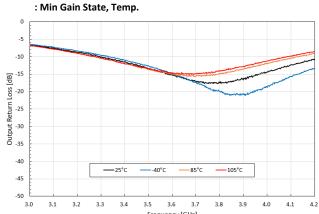


Figure 13. Gain vs Frequency

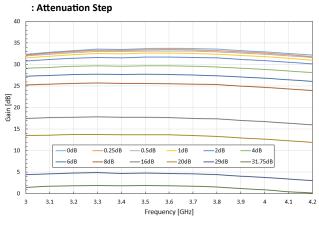


Figure 14. Gain vs Attenuation Settings

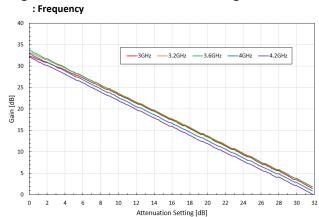
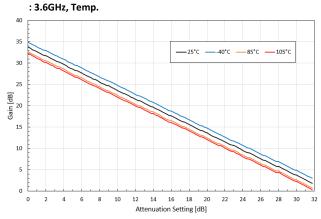



Figure 15. Gain vs Attenuation Settings

3000MHz - 4200MHz

Typical RF Performance - BVA7242N EVK

Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Figure 16. Attenuation Error

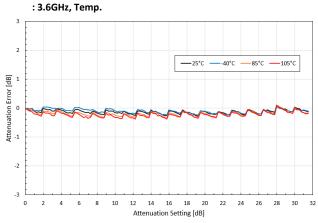


Figure 17. Attenuation Error

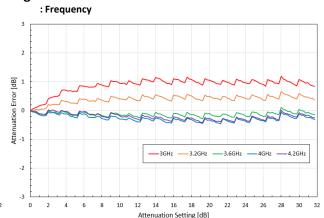


Figure 18. Attenuation Error

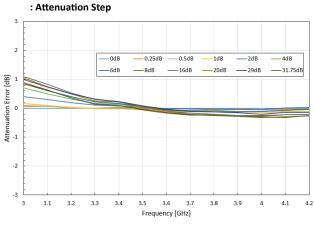


Figure 19. Relative Phase Error

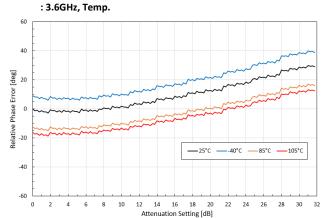
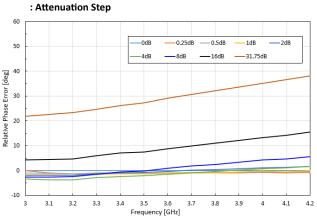
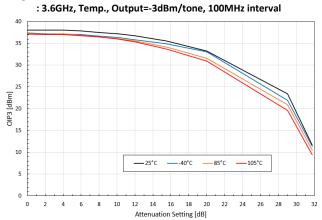



Figure 20. Relative Phase Error



3000MHz - 4200MHz

Typical RF Performance - BVA7242N EVK

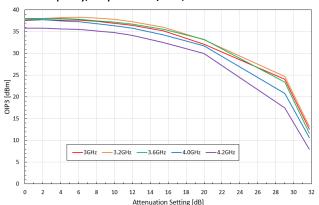
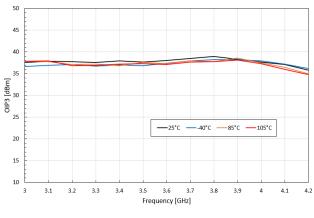
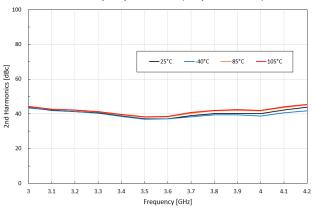

Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Figure 21. OIP3


Figure 22. OIP3

: Frequency, Output=-3dBm/tone, 100MHz interval


Figure 23. OIP3

: ATT=0dB, Temp., Output=-3dBm/tone, 100MHz interval

Figure 24. 2nd Harmonics

: ATT=0dB, Temp., Input=-20dBm (Output=13.5dBm)

Figure 25. 2nd Harmonics

: Attenuation Step, Input=-20dBm

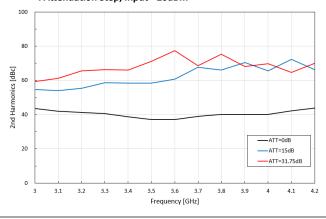
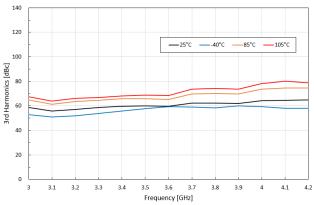



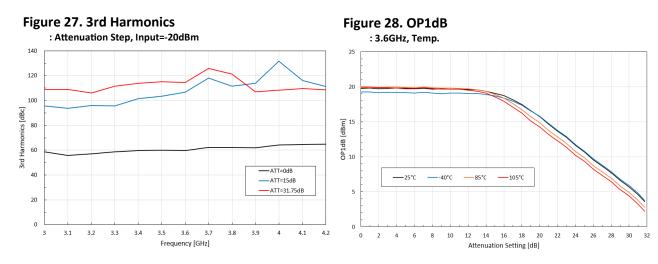
Figure 26. 3rd Harmonics

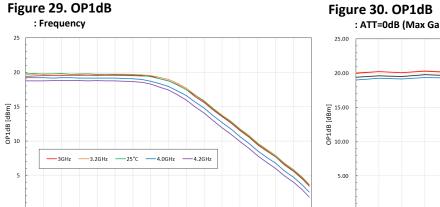
: ATT = 0dB(Max Gain), Input=-20dBm (Output=13.5dBm)

BeRex

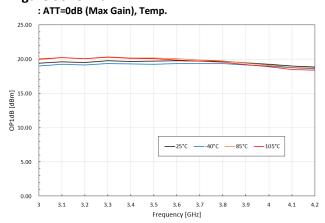
•website: www.berex.com

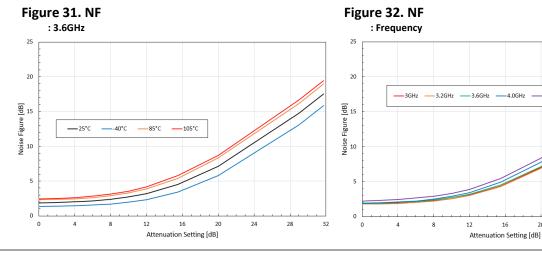
•email: sales@berex.com


12



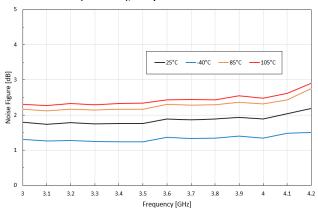
3000MHz - 4200MHz


Typical RF Performance - BVA7242N EVK


Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

12 14 16 18 20 Attenuation Setting [dB]

BeRex ●website: www.berex.com ●email: sales@berex.com 13


3000MHz - 4200MHz

Typical RF Performance - BVA7242N EVK

Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Figure 33. NF

: ATT=0dB (Max Gain), Temp.

Figure 34. ACLR @ 5G NR, 100MBW

: Fc=3.05GHz, ATT=0dB, Output Power@-50dBc ACLR

Figure 35. ACLR @ 5G NR, 100MBW

: Fc=3.6GHz, ATT=0dB, Output Power@-50dBc ACLR

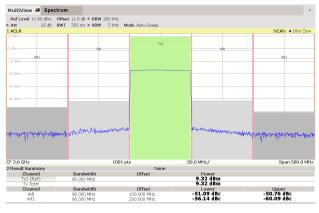
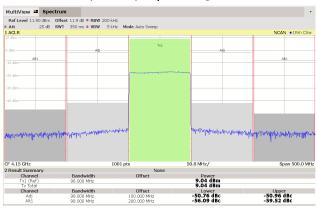



Figure 36. ACLR @ 5G NR, 100MBW

: Fc=4.15GHz, ATT=0dB, Output Power@-50dBc ACLR

Figure 37. Power On/Off Time

: Rising Time (Control 50% to RF 90%)

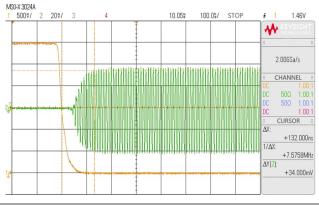
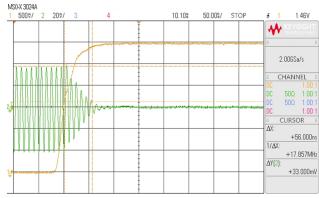



Figure 38. Power On/Off Time

: Falling Time (Control 50% to RF 10%)

BeRex •website: www.berex.com

•email: sales@berex.com

14

3000MHz - 4200MHz

Figure 39. Evaluation Board Schematic

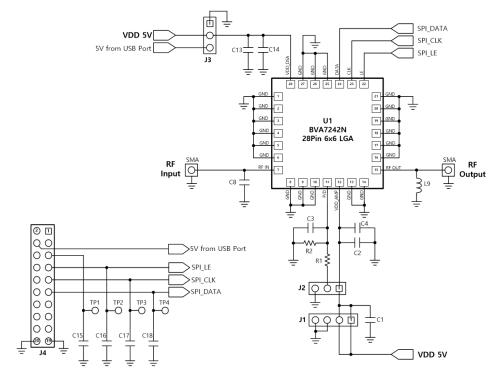


Table 10. Bill of material

No.	Ref. Number	Value	Description	Manufacturer
1	R1	20 Kohm	Resistor, 0603, Chip, 5%	Walsin
2	R2	30 Kohm	Resistor, 0603, Chip, 5%	Walsin
3	C1	1 uF	Capacitor, 0603, Chip, 5%	Murata
4	C2	100 nF	Capacitor, 0402, Chip, 5%	Murata
5	C3	100 pF	Capacitor, 0402, Chip, 5%	Murata
6	C4	100 pF	Capacitor, 0402, Chip, 5%	Murata
7	C8	0.4 pF	Capacitor, 0402, Chip, 5%	Murata
8	L9	4.7 nH	Inductor, 0402, Chip, 5%	Murata
9	C13	100 nF	Capacitor, 0402, Chip, 5%	Murata
10	C14	100 pF	Capacitor, 0402, Chip, 5%	Murata
11	SMA1	SMA	SMA(F) Connector, PCB Mount, PSF-S01-007	Gigalane
12	SMA2	SMA	SMA(F) Connector, PCB Mount, PSF-S01-007	Gigalane
13	J1	4pin	2.54mm Breakaway Male Header, Straight, Black	
14	J2	3pin	2.54mm Breakaway Male Header, Straight, Black	
15	J3	3pin	2.54mm Breakaway Male Header, Straight, Black	
16	J4	20pin	Receptacle Connector, 5-532955-3, Female,RT/A Dual	AMP Connectors
17	C15,C16,C17,C18	DNI	Not connected	

Figure 40. Evaluation Board Layout

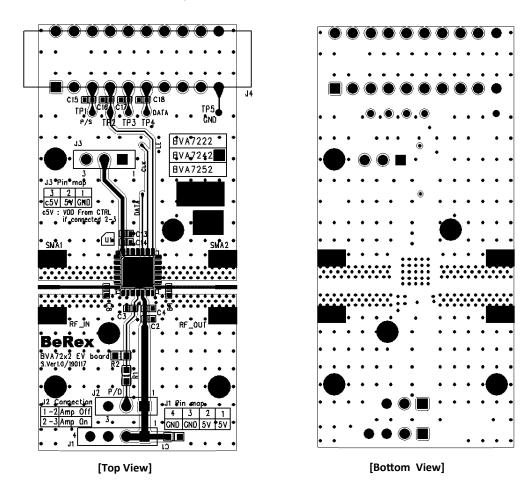
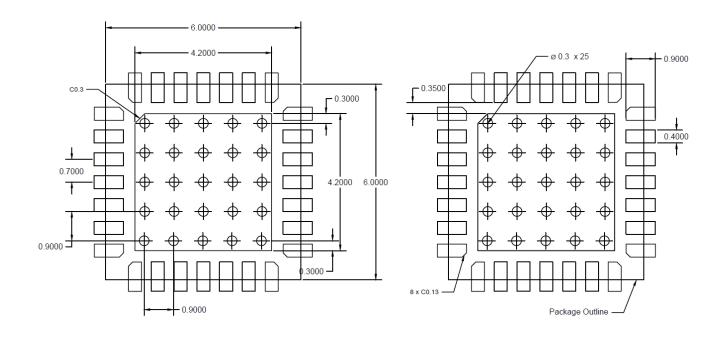



Figure 41. Evaluation Board PCB Layer Information

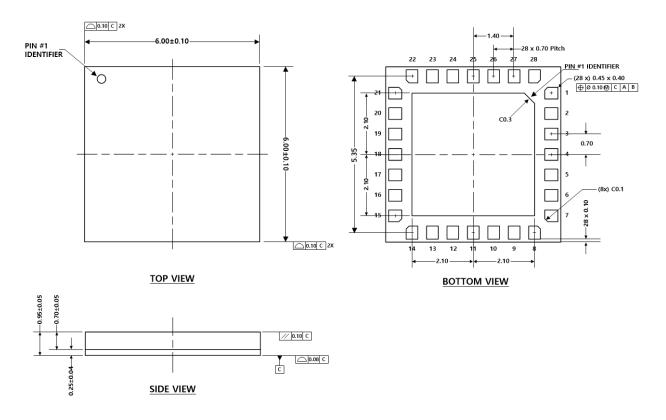

3000MHz - 4200MHz

Figure 42. Suggested PCB Land Pattern and PAD Layout

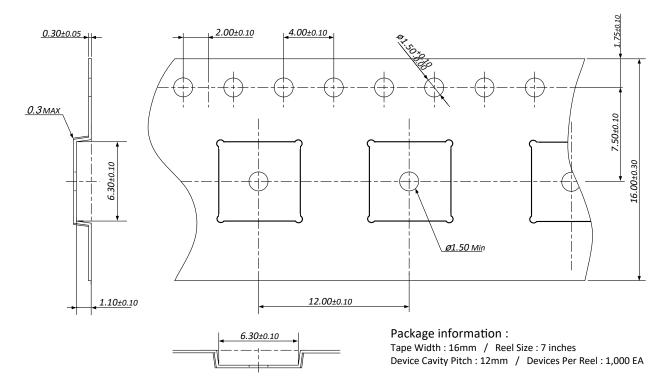
3000MHz - 4200MHz

Figure 43. Package Outline Dimension

Notes

- 1. All dimensions are in millimeters. Angles are in degrees
- 2. Dimensions and tolerance conform with ASME Y14.5M-1994.

Figure 44. Package Marking Information


YY = Year

WW = Working Week

XX = Wafer Lot Number

3000MHz - 4200MHz

Figure 45. Tape and Reel

Rev. 1.2

3000MHz - 4200MHz

Lead Plating Finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD Rating: Class 1C Value: 1000V

Test: Human Body Model (HBM)
Standard: JEDEC Standard JS-001-2017

ESD Rating : Class C5 Value : 1000V

Test : Charged Device Model (CDM) Standard : JEDEC Standard JESD22-C101F

MSL Rating: MSL3 at +260°C convection reflow

Standard: JEDEC Standard J-STD-020

Proper ESD procedures should be followed when handling the device.

RoHS Compliance

This part is compliant with Restrictions on the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU.

This product also is compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1%(w/w) in each components of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

NATO GAGE Code:

2 N 9 6 F

BeRex •website: www.berex.com •email: sales@berex.com 20