
BDW24, BDW24A, BDW24B, BDW24C PNP SILICON POWER DARLINGTONS

BOURNS®

- Designed for Complementary Use with BDW23, BDW23A, BDW23B and BDW23C
- 50 W at 25°C Case Temperature
- 6 A Continuous Collector Current
- Minimum h_{FE} of 750 at 2 A, 3 V

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT		
	BDW24		-45		
Collector base veltage (I)	BDW24A	V	-60	v	
Collector-base voltage ($I_E = 0$)	BDW24B	V _{CBO}	-80	v	
	BDW24C		-100		
	BDW24		-45		
Collector omitter veltage $(I_{-} = 0)$	BDW24A	V	-60	v	
Collector-emitter voltage ($I_B = 0$)	BDW24B	V _{CEO}	-80		
	BDW24C		-100		
Emitter-base voltage	V _{EBO}	-5	V		
Continuous collector current	Ι _C	-6	A		
Continuous base current	I _B	-0.2	A		
Continuous device dissipation at (or below) 25°C case temperature (see Not	P _{tot}	50	W		
Continuous device dissipation at (or below) 25°C free air temperature (see No	P _{tot}	2	W		
Operating junction temperature range	Тj	-65 to +150	°C		
Storage temperature range	T _{stg}	-65 to +150	°C		
Operating free-air temperature range	T _A	-65 to +150	°C		

NOTES: 1. Derate linearly to 150°C case temperature at the rate of 0.4 W/°C.

2. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.

PRODUCT INFORMATION

MAY 1989 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

1

BDW24, BDW24A, BDW24B, BDW24C PNP SILICON POWER DARLINGTONS

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS				MIN	ТҮР	MAX	UNIT
	Collector-emitter				BDW24 BDW24A	-45 -60			
V _{(BR)CEO}	breakdown voltage	I _C = -100 mA	$I_{B} = 0$	(see Note 3)	BDW24B	-80			V
					BDW24C	-100			
I _{CEO}	Collector-emitter	$V_{CE} = -30 V$	I _B = 0		BDW24			-0.5	mA
		$V_{CE} = -30 V$	$I_B = 0$		BDW24A			-0.5	
	cut-off current	$V_{CE} = -40 V$	$I_B = 0$		BDW24B			-0.5	
		$V_{CE} = -50 V$	$I_B = 0$		BDW24C			-0.5	
	Collector cut-off current	$V_{CB} = -45 V$	I _E = 0		BDW24			-0.2	
I _{CBO}		V _{CB} = -60 V	$I_E = 0$		BDW24A			-0.2	mA
		V _{CB} = -80 V	$I_E = 0$		BDW24B			-0.2	ШA
		V _{CB} = -100 V	$I_E = 0$		BDW24C			-0.2	
I _{EBO}	Emitter cut-off current	V _{EB} = -5 V	$I_{\rm C} = 0$					-2	mA
	Forward current transfer ratio	V _{CE} = -3 V	I _C = -1 A			1000			
h _{FE}		V _{CE} = -3 V	I _C = -2 A	(see Notes 3 and 4)	14)	750		20000	
		V _{CE} = -3 V	I _C = -6 A			100			
V	Collector-emitter saturation voltage	I _B = -8 mA	I _C = -2 A	(see Notes 3 and 4)	(4)			-2	V
V _{CE(sat)}		I _B = -60 mA	I _C = -6 A		(+)			-3	v
Ver	Base-emitter	I _B = -8 mA	I _C = -2 A	(see Notes 3 and 4)	(4)			-2.5	V
V _{BE(sat)}	saturation voltage	B	0		• •)			2.0	•
V _{BE(on)}	Base-emitter	V _{CE} = -3 V	C	(see Notes 3 and 4)	(4)			-2.5	V
* BE(on)	voltage	$V_{CE} = -3 V$	I _C = -6 A		/			-3	•
V_{EC}	Parallel diode forward voltage	I _E = -2 A	$I_{B} = 0$					-1.8	V

NOTES: 3. These parameters must be measured using pulse techniques, t_p = 300 µs, duty cycle \leq 2%.

4. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

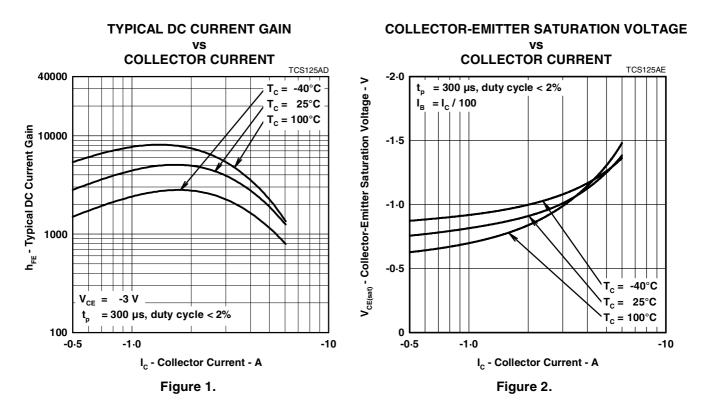
thermal characteristics

PARAMETER			ТҮР	MAX	UNIT
R _{θJC}	Junction to case thermal resistance			2.5	°C/W
R _{θJA}	Junction to free air thermal resistance			62.5	°C/W

resistive-load-switching characteristics at 25°C case temperature

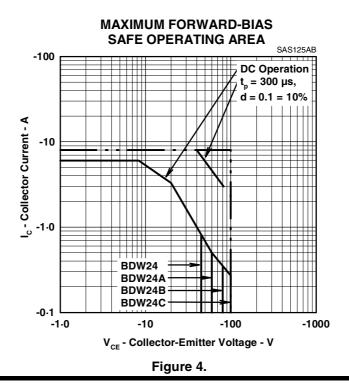
	PARAMETER	TEST CONDITIONS [†]			MIN	ТҮР	МАХ	UNIT
t _{on}	Turn-on time	I _C = -3 A	I _{B(on)} = -12 mA	I _{B(off)} = 12 mA		1		μs
t _{off}	Turn-off time	$V_{BE(off)} = 4.5 V$	$R_L = 10 \ \Omega$	$t_p=20~\mu s,~dc\leq 2\%$		5		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

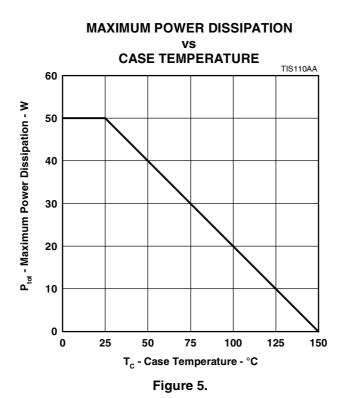


MAY 1989 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

TYPICAL CHARACTERISTICS


BASE-EMITTER SATURATION VOLTAGE vs **COLLECTOR CURRENT** TCS125AF -3.0 -40°C = V_{BE(sat)} - Base-Emitter Saturation Voltage - V тс 25°C T_c = 100°C -2.0 -2.5 -1.0 -1.5 = I_c / 100 I_B = 300 μ s, duty cycle < 2% -0.5 -0.5 -1.0 -10 I_c - Collector Current - A Figure 3.

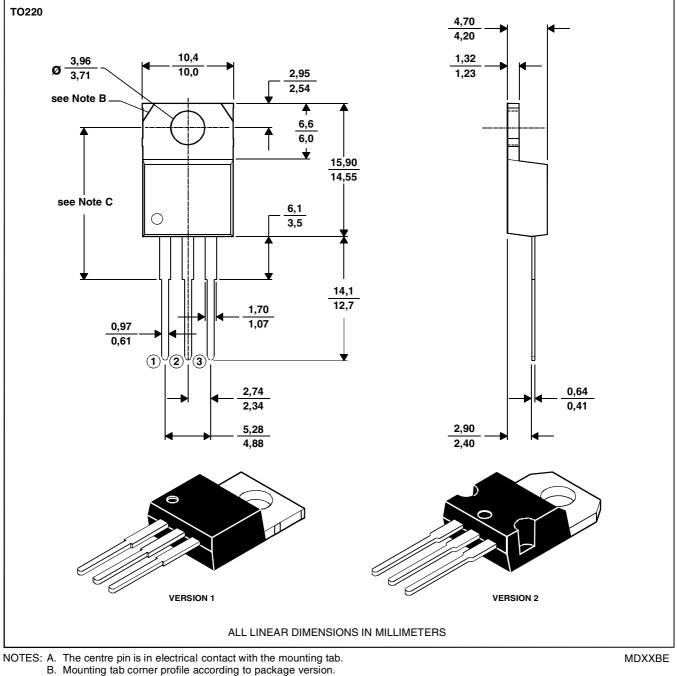
PRODUCT INFORMATION


MAY 1989 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice. ··· Detechent4U.com

BDW24, BDW24A, BDW24B, BDW24C PNP SILICON POWER DARLINGTONS

MAXIMUM SAFE OPERATING REGIONS

MAY 1989 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.


MECHANICAL DATA

TO-220

3-pin plastic flange-mount package

BOURNS®

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

C. Typical fixing hole centre stand off height according to package version. Version 1, 18.0 mm. Version 2, 17.6 mm.

PRODUCT INFORMATION

MAY 1989 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice. t4U.com