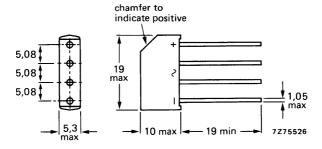
SILICON BRIDGE RECTIFIER

Plastic-encapsulated bridge rectifier comprising four silicon double-diffused diodes. It is primarily intended for use in the power supplies of many types of transistorised equipment operating at frequencies up to 400 Hz.


QUICK REFERENCE DATA

Input				
R.M.S. voltage	V _I (RMS)	max.	60	٧
Repetitive peak voltage	v_{IRM}	max.	120	٧
Non-repetitive peak current	^I ISM	max.	25	Α
Output				
Average current	l _{O(AV)}	max.	1.2	Α

MECHANICAL DATA

Dimensions in mm

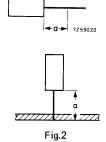
Fig. 1 SOD-28

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

In	out


R.M.S. voltage	V _{I(RMS)}	max.	60	٧	
Crest working voltage	VIWM	max.	85	V	
Repetitive peak voltage	v_{IRM}	max.	120	V	
Non repetitive peak voltage; t ≤ 10 ms	V _{ISM}	max.	120	٧	
Non-repetitive peak current (see also Fig.8)	¹ ISM	max.	25	Α	
Output					
Average current with C load	See Figs. 3, 6				
Average current with R and L load (see also Fig.5)					
V _{I(RMS)} ≤ 60 V	IO(AV)	max.	1.2	Α	
Repetitive peak current	IORM	max.	5	Α	
Temperatures					
Storage temperature	T_{stg}	-55 to +125		οС	
Junction temperature	T;	max.	150	oC	

THERMAL RESISTANCE

Influence of mounting method

The quoted values of $R_{th\ j-a}$ should be used only when no leads of other dissipating components run to the same tie-point.

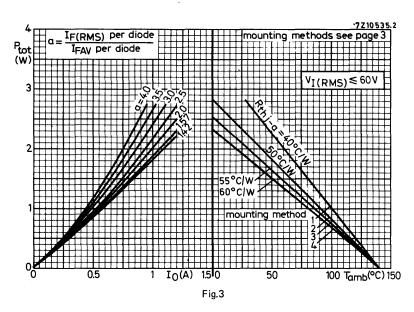
- 1. Mounted to solder tags at a lead-length a > 5 mm. R_{th j-a} = 40 °C/W
- 2. Mounted on printed-wiring board at a = maximum lead-length. $R_{th i-a} = 50 \, {}^{\circ}\text{C/W}$
- 3. Mounted on printed-wiring board at a lead-length a = 5 mm. R_{th i-a} = 55 °C/W
- Mounted on printed-wiring board at a lead-length a = 1.5 mm. R_{th} j-a = 60 °C/W (distance -a- includes printed-wiring board thickness)

MOUNTING INSTRUCTIONS

- 1. The maximum permissible temperature of the soldering iron or bath is 270 °C; it must not be in contact with the joint for more than 3 seconds.
- 2. Avoid hot spots due to handling or mounting; the body of the device must not come into contact with or be exposed to a temperature higher than 150 °C.
- 3. Exert no axial pull when bending.

CHARACTERISTICS

Forward voltage (2 diodes in series) $I_F = 2 A; T_i = 25 °C$


٧F

<

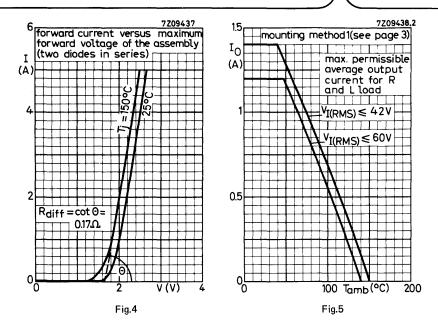
2.2

1/4

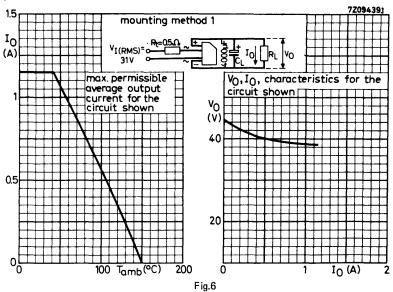
^{*}Measured under pulse conditions to avoid excessive dissipation.

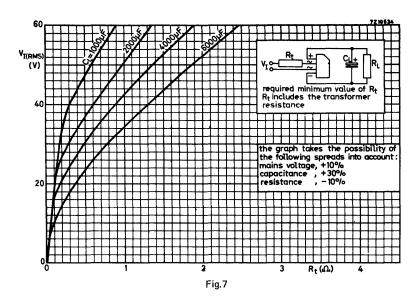
From the left-hand graph the total power dissipation can be found as a function of the average output current.

The parameter
$$a = \frac{IF(RMS) \text{ per diode}}{IF(AV) \text{ per diode}}$$
 depends on $\omega R_L C_L$ and $\frac{R_t + R_{diff}}{R_L}$ and can be found from


existing graphs.

See Application Book: RECTIFIER DIODES.


Once the power dissipation is known, the max. permissible ambient temperature follows from the right-hand graph.


For the series resistance, added to limit the initial peak rectifier current, the required minimum value can be found from Fig.5.

Rdiff is shown in Fig.4.

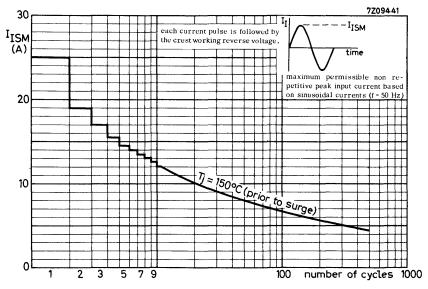


Fig.8