PARALLEL-EFFICIENCY AND ENERGY-RECOVERY DIODE

Silicon double-diffused rectifier diode in a plastic envelope, intended for use as efficiency diode in transistorised horizontal deflection circuits of colour television receivers, and as an energy-recovery diode in thyristor commutation circuits such as 3-phase a.c. motor speed control inverters.

QUICK REFERENCE DATA

Repetitive peak reverse voltage Average forward current Working peak forward current	V _{RRM} ^J F(AV)	max. max.	1500 4.5	V A
Repetitive peak forward current $(t_p = 100 \ \mu s)$. Reverse recovery time	'FWM ^I FRM ^t rr	max. max. <	200 1.0	A µs

MECHANICAL DATA

Polarity of connections: tag 1 = anode, tag 2 = cathode The exposed metal base-plate is directly connected to tag 1

Net mass: 2.5 g

Accessories:

supplied with the device: washer 56355 available on request: 56316 (mica insulating washer) Dimensions in mm

Torque on screw: min. 0.95 Nm (9.5 kg cm) max. 1.5 Nm (15 kg cm)

BY223

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages				
Transient rating (subsequent to flashover)	V _{RM} (flashover) ma		1650	V
Non-repetitive peak reverse voltage (t \leq 10 ms)	V _{RSM}	max.	1500	V
Repetitive peak reverse voltage	V _{RRM}	max.	1500	v
Working reverse voltage*	V _{RW}	max.	1500	V
Contínuous reverse voltage	VR	max.	800	V
Currents				
Average forward current (averaged over any 20 ms period) up to $T_{mb} = 85$ °C) ¹ F(AV) r		4.5	A
R.M.S. forward current	IF (RMS)	max.	10	. A
Working peak forward current (see Fig.8)	FWM	max.	5	А
Repetitive peak forward current ($t_p = 100 \ \mu s$)	¹ FRM	max.	200	А
Repetitive peak forward current	^I FRM	max.	10	А
Non-repetitive peak forward current (t = 10 ms; half-sinewave) $T_j = 125 \ ^{o}C$ prior to surge	IFSM	max.	20	A
Temperatures				
Storage temperature	T _{stq}	-40 to +125		οС
Junction temperature	тј	max.	125	°C
THERMAL RESISTANCE				
From junction to mounting base	R _{th} j-mb =		4.5	°C/W
Transient thermal impedance; t = 1 ms	Z _{th j-mb}	=	0.3	°C/W
Influence of mounting method				
1. Heatsink mounted				
From mounting base to heatsink a. with heatsink compound	R _{th mb-h}	=	1.5	°C/W
b. with heatsink compound and 56316 mica washer	R _{th mb-h}	=	2.7	°C/W
c. without heatsink compound	R _{th mb-h}	=	2.7	°C/W
d. without heatsink compound; with 56316 mica washer	R _{th mb-h}	=	5	°C/W

* At $t_p \leq 20 \ \mu s$; $\delta = t_p/T \leq 0.25$; see Fig.8.

THERMAL RESISTANCE (continued)

2. Free air operation

The quoted values of $R_{th j-a}$ should be used only when no leads of other dissipating components run to the same tie-points.

From junction to ambient in free air mounted on a printed circuit board

at a = maximum lead length

and with a copper laminate

at a lead length a = 3 mm and with a copper laminate

- a. > 1 cm²
- b. $< 1 \text{ cm}^2$

 $> 1 \text{ cm}^2$

 $< 1 \, cm^2$

c.

d.

R_{th j-a} = 50 °C/W. R_{th j-a} = 55 °C/W

SOLDERING AND MOUNTING NOTES

- 1. Soldered joints must be at least 2.5 mm from the seal.
- 2. The maximum permissible temperature of the soldering iron or bath is 270 °C; contact with the joint must not exceed 3 seconds.

R_{th j-a} = 55 °C

 $R_{th i-a} = 60 \text{ °C}$

- 3. The device should not be immersed in oil, and few potting resins are suitable for re-encapsulation. Advice on these materials is available on request.
- 4. Leads should not be bent less than 2.5 mm from the seal. Exert no axial pull when bending.
- 5. For good thermal contact, heatsink compound should be used between base-plate and heatsink.

CHARACTERISTICS

Forward voltage				
I _F = 20 A; T _j = 25 °C	۷F	<	2.3	۷*
Reverse current				
V _R = V _{RW} max; T _j = 125 °C	1 _R	<	0.6	mA
Reverse recovery when switched from				
I _{FWM} = 4 A; -dI _F /dt = 0.2 A/μs; T _j = 125 °C total recovery time	t _{tot}	<	20	μs
I _F = 2 A; -dI _F /dt = 20 A/µs; T _j = 125 ^o C recovery time	t _{rr}	<	1.0	μs
Forward recovery time				
when switched to I_{FRM} = 5 A with t_r = 0.1 μ s; T _i = 125 ^o C	t _{fr}	<	1.0	μs

Fig.2 Definition of reverse recovery times.

Fig.3 Definition of forward recovery time

* Measured under pulse conditions to avoid excessive dissipation.

4 December 1979

BY223

Fig.4 Interrelationship between the power dissipation (based on the waveforms shown in Fig.8) and the maximum permissible temperatures.

P = power dissipation including switching losses.

Fig.5 The right-hand part shows the interrelationship between the power dissipation (derived from the left-hand part) and the maximum permissible temperatures.

P = power dissipation including switching losses.

a = form factor = IF(RMS)/IF(AV)

Parallel-efficiency and energy-recovery diode

BY223

7

APPLICATION INFORMATION

