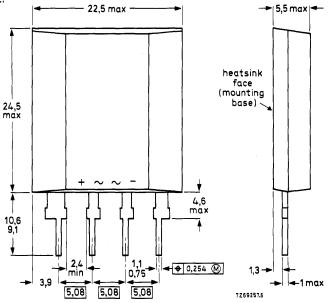
SILICON BRIDGE RECTIFIERS

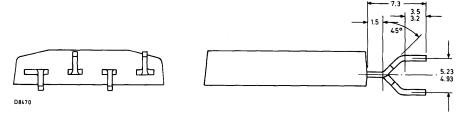
Ready-for-use mains full-wave bridges, each consisting of four double-diffused silicon diodes, in a plastic encapsulation. The bridges are intended for use in equipment supplied from mains with r.m.s. voltages up to 280 V and are capable of delivering up to 1000 W into capacitive loads. They may be used in free air or clipped to a heatsink.


QUICK REFERENCE DATA

Input		BY224-400		600 V
R.M.S. voltage	V _I (RMS)	max.	220	280 V
Repetitive peak voltage	VIRM	max.	400	600 V
Non-repetitive peak current	ISM	max.		100 A
Peak inrush current	IIIM	max.		200 A
Output				
Average current	IO(AV)	max.		4,8 A

MECHANICAL DATA (see also Fig.1a)

Dimensions in mm



Net mass: 6,8 g Accessories supplied on request: 56366 (clip); for mounting instructions see data 56366. The sealing of the plastic withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

MECHANICAL DATA (continued)

→ Fig. 1a

A version with cranked pins (as shown in figure 1a) is available on request.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

	Input		BY224-400		600	
	Non-repetitive peak voltage ($t \le 10 \text{ ms}$)	v_{ISM}	max.	400	600	٧
	Repetitive peak voltage	v_{IRM}	max.	400	600	V
	Crest working voltage	v_{IWM}	max.	350	400	٧
	R.M.S. voltage (sine-wave)	VI(RMS)	max.	220	280	V
	Non-repetitive peak current half sine-wave; t = 20 ms; with reapplied V _{IWMmax}					
	T _j = 25 °C prior to surge	[†] ISM	max.		100	
\rightarrow	T _j = 150 °C prior to surge	¹ISM	max.		85	Α
	Peak inrush current (see Fig. 6)	IIIM	max.		200	Α
	Output					
	Average current (averaged over any 20 ms period; see Figs 2 and 3)					
	heatsink operation up to T _{mb} = 90 °C	lO(AV)	max.		4,8	Α
	free-air operation at T _{amb} = 45 °C;					
	(mounting method 1a)	lO(AV)	max.		2,5	Α
	Repetitive peak current	IORM	max.		50	Α
\rightarrow	Temperatures					
	Storage temperature	T_{stq}		-40 to	+150	oC
	Junction temperature	Tj	max.		150	οС

THERMAL RESISTANCE

From junction to mounting base

4.0 °C/W R_{th j-mb}

Influence of mounting method

1. Free-air operation

The quoted values of R_{th i-a} should be used only when no loads of other dissipating components run to the same tie-point (see Fig. 3).

Thermal resistance from junction to ambient in free air

a. Mounted on a printed-circuit board with 4 cm² of copper laminate to + and - leads

19,5 °C/W R_{th i-a}

b. Mounted on a printed-circuit board with minimal copper laminate

R_{th i-a} 25 °C/W

2. Heatsink mounted with clip (see mounting instructions)

Thermal resistance from mounting base to heatsink

a. With zinc-oxide heatsink compound

1.0 °C/W Rth mh-h

b. Without heatsink compound

2.0 °C/W Rth mb-h

MOUNTING INSTRUCTIONS

- 1. Soldered joints must be at least 4 mm from the seal.
- 2. The maximum permissible temperature of the soldering iron or bath is 270 °C; contact with the joint must not exceed 3 seconds.
- 3. Avoid hot spots due to handling or mounting; the body of the device must not come into contact with or be exposed to a temperature higher than 150 °C.

- 4. Leads should not be bent less than 4 mm from the seal. Exert no axial pull when bending.
- 5. Recommended force of clip on device is 120 N (12 kgf).
- 6. The heatsink should be in contact with the entire mounting base of the device and heatsink compound should be used.

CHARACTERISTICS

Forward voltage (2 diodes in series)

 $I_F = 10 \text{ A}; T_i = 25 \text{ }^{\circ}\text{C}$

2,3 V* ٧r

Reverse current (2 diodes in parallel)

l_R

 $V_R = V_{IWMmax}$; $T_i = 25 \, {}^{\circ}C$

200 µA

^{*} Measured under pulse conditions to avoid excessive dissipation.

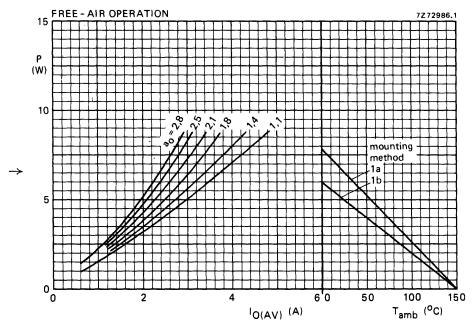


Fig. 2 The right-hand part shows the interrelationship between the power (derived from the left-hand graph) and the maximum permissible ambient temperature.

Output form factor $a_0 = I_{O(RMS)}/I_{O(AV)} = 0.707 \times I_{F(RMS)}/I_{F(AV)}$ per diode.

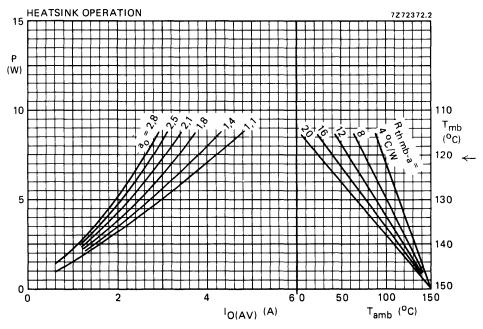


Fig. 3 The right-hand part shows the interrelationship between the power (derived from the left-hand graph) and the maximum permissible temperatures.

Output form factor $a_0 = I_{O(RMS)}/I_{O(AV)} = 0,707 \times I_{F(RMS)}/I_{F(AV)}$ per diode.

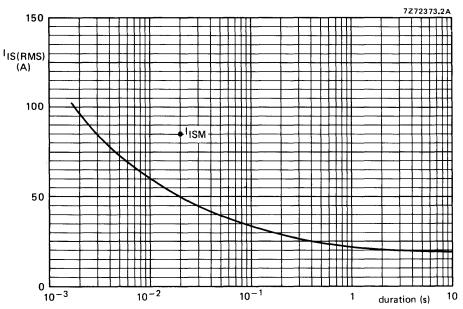


Fig.4 Maximum permissible non-repetitive r.m.s. input current based on sinusoidal currents (f = 50 Hz); \rightarrow T_j = 150 °C prior to surge; with reapplied V IWMmax.

· IS(RMS)

time

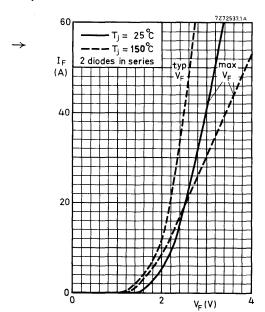
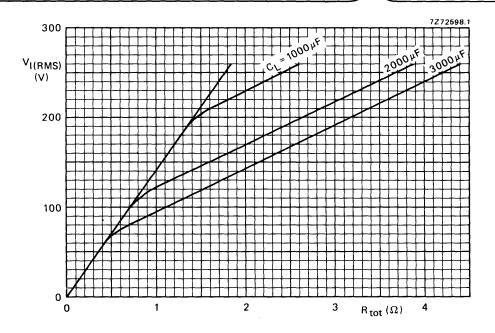
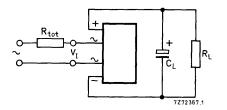
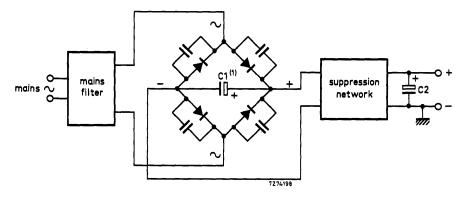




Fig.5



The graph takes the possibility of the following spreads into account:

mains voltage +10% capacitance +50% resistance -10%

Fig. 6 Minimum value of the total series resistance R_{tot} (including the transformer resistance) required to limit the peak inrush current.

APPLICATION INFORMATION

(1) External capacitor.

Fig. 7 Because smoothing capacitor C2 is not always connected directly across the bridge (a suppression network may be sited between capacitor and bridge as shown), it is necessary to connect a capacitor of about 1 μ F, C1, between the + and – terminals of the bridge. This capacitor should be as close to the bridge as possible, to give optimum suppression of mains transients.

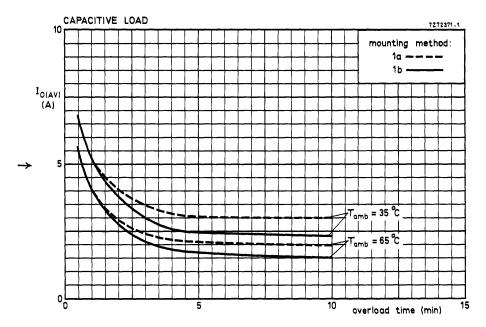


Fig.8