SILICON BRIDGE RECTIFIER

Ready-for-use full-wave bridge rectifier in a plastic encapsulation. The bridge is intended for use in equipment supplied from a.c. with r.m.s. voltages up to 80 V and is capable of delivering output currents up to 1.5 A.

QUICK REFERENCE DATA

Input					
R.M.S. voltage	VI(RMS)	max.	80	v	
Repetitive peak voltage	VIRM	max.	200	v	
Non-repetitive peak current	⁽ ISM	max.	50	А	
Output					
Average current	O(AV)	max.	1.5	А	

MECHANICAL DATA

Fig.1 SOD-28

Dimensions in mm

chamfer to

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

1

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Input				
Non-repetitive peak voltage (t \leq 10 ms)	VISM	max.	200	V
Repetitive peak voltage	VIRM	max.	200	V
Crest working voltage	VIWM	max.	112	V
R.M.S. voltage (sine-wave)	VI(RMS)	max.	80	V,
Non-repetitive peak current; half sine-wave; t = 20 ms; with reapplied VIWMmax			- - -	
T _j = 150 °C prior to surge	ISM	max.	50	Α
Output				e.
Average current (averaged over any 20 ms period); see Fig.3)				
free-air operation at T _{amb} = 45 °C; (mounting method a)	IO(AV)	max.	1.5	A
Repetitive peak current	IORM	max.	10	Α
Temperatures		•		
Storage temperature	T _{stg}	—55 to	+150	°C
.lunction temperature	Т.	max.	150	00

THERMAL RESISTANCE

Influence of mounting method

1. Free-air operation

The quoted values of $R_{th\ j-a}$ should be used only when no leads of other dissipating components run to the same tie-point

Thermal resistance from junction to ambient in free air

a.	Mounted on a printed-circuit board with 4 cm^2 of copper laminate to + and — leads	R _{th j-a}	=	38	°C/W
b.	Mounted on a printed-circuit board with minimal copper laminate; 1.5 mm lead length	R _{th j-a}	=	52	°C/W
c.	Mounted on a printed-circuit board with minimal copper laminate; maximum lead length	R _{th j-a}	=	44	°C/W

MOUNTING INSTRUCTIONS

- 1. The maximum permissible temperature of the soldering iron or bath is 270 °C; it must not be in contact with the joint for more than 3 seconds.
- Avoid hot spots due to handling or mounting; the body of the device must not come into contact with or be exposed to a temperature higher than 150 °C
- 3. Exert no axial pull when bending.

CHARACTERISTICS

Forward voltage (2 diodes in series) $I_F = 2 A; T_i = 25 \text{ °C}$

*Measured under pulse conditions to avoid excessive dissipation.

3

<

2.1 V*

VF

OPERATING NOTES

The various components of junction temperature rise above ambient are illustrated below.

The thermal resistance between envelope and tie-point and between envelope and ambient depend on lead length:

lead length	1.5	5	10	15	max.	mm
R _{th e-tp}	1.2	4	8	12	15.2	°C/W
R _{th e-a}	110	87	73	65	60	°C/W

The thermal resistance between tie-point and ambient depends on the mounting method; for mounting on a 1.5 mm thick epoxy-glass printed-circuit board with a copper-thickness $\ge 40 \ \mu$ m, the following values apply:

- 1. Mounting with minimal copper laminate: Rth tp-a = 70 °C/W
- 2. Mounted on a printed-circuit board with a copper laminate to the + and lead of:

 $\begin{array}{l} 1 \ cm^2: \ R_{th} \ tp-a = 55 \ ^{o}C/W \\ 2.25 \ cm^2: \ R_{th} \ tp-a = 45 \ ^{o}C/W \\ 4 \ cm^2: \ R_{th} \ tp-a = 40 \ ^{o}C/W \end{array}$

Fig.2

Note: Any temperature can be calculated by using the dissipation graphs and the above thermal model.

FREE-AIR OPERATION

Fig.3 The right-hand part shows the interrelationship between the power (derived from the left-hand graph) and the maximum permissible ambient temperature.

Output form factor $a_0 = I_0(RMS)/I_0(AV) = 0.707 \times I_F(RMS)/I_F(AV)$ per diode.

Fig.4 Maximum permissible non-repetitive peak input current based on sinusoidal currents (f = 50 Hz); T_j = 150 °C prior to surge; with reapplied V_{IWMmax} .

Fig.6 Minimum value of the total series resistance R_{tot} (including the transformer resistance) required to limit the peak inrush current.