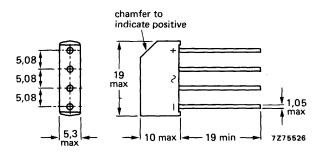
SILICON BRIDGE RECTIFIER

Ready-for-use full-wave bridge rectifier in a plastic encapsulation. The bridge is intended for use in equipment supplied from mains with r.m.s. voltages up to 280 V and is capable of delivering output currents up to 1.5 A.


QUICK REFERENCE DATA

Input				
R.M.S. voltage	VI(RMS)	max.	280	V
Repetitive peak voltage	VIRM	max.	600	V
Non-repetitive peak current	ISM	max.	50	А
Output				
Average current	lOA(V)	max.	1.5	A

MECHANICAL DATA

Fig. 1 SOD-28

Dimensions in mm

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Input				
Non-repetitive peak voltage (t \leq 10 ms)	VISM	max.	600	V
Repetitive peak voltage	VIRM	max.	600	۷
Crest working voltage	VIWM	max.	400	v
R.M.S. voltage (sine-wave)	V _{I(RMS)}	max.	280	٧
Non-repetitive peak current;* half sine-wave; t = 20 ms; with reapplied V _{IWMmax} T _j = 150 °C prior to surge	ISM	max.	50	А
Output				
Average current (averaged over any 20 ms period; see Fig.3)				
free-air operation at T _{amb} = 45 °C; (mounting method a)	lO(AV)	max.	1.5	А
Repetitive peak current	IORM	max.	10	Α
Temperatures				
Storage temperature	T _{stg} —55 to +15		+150	٥C
Junction temperature	т _ј	max.	150	°C

38 °C/W

THERMAL RESISTANCE

Influence of mounting method

1. Free-air operation

The quoted values of R_{th} j-a should be used only when no leads of other dissipating components run to the same tie-point.

Thermal resistance from junction to ambient in free air

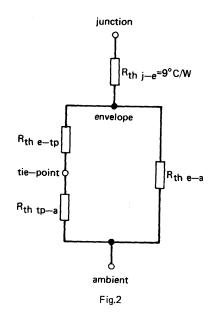
- a. Mounted on a printed-circuit board with 4 cm² of copper laminate to + and leads
 b. Mounted on a printed-circuit board with
- minimal copper laminate; 1.5 mm lead lengthR th j-a=52°C/Wc. Mounted on a printed-circuit board with
minimal copper laminate; maximum lead lengthR th j-a=44°C/W

MOUNTING INSTRUCTIONS

- 1. The maximum permissible temperature of the soldering iron or bath is 270 °C; it must not be in contact with the joint for more than 3 seconds.
- 2. Avoid hot spots due to handling or mounting; the body of the device must not come into contact with or be exposed to a temperature higher than 150 °C.
- 3. Exert no axial pull when bending.

CHARACTERISTICS

Forward voltage (2 diodes in series)


V_F < 2.1 V*

R_{th} j-a

*Measured under pulse conditions to avoid excessive dissipation.

OPERATING NOTES

The various components of junction temperature rise above ambient are illustrated below.

The thermal resistance between envelope and tie-point and between envelope and ambient depend on lead length:

lead length	1.5	5	10	15	max.	mm
R _{th e-tp}	1.2	4	8	12	15.2	°C/W
R _{th e-a}	110	87	73	65	60	°C/W

The thermal resistance between tie-point and ambient depends on the mounting method. For mounting on a 1.5 mm thick epoxy-glass printed-circuit board with a copper-thickness \ge 40 μ m, the following values apply:

1. Mounting with minimal copper laminate: Rth tp-a = 70 °C/W

2. Mounted on a printed-circuit board with a copper laminate to the + and -- lead of:

 $1 \text{ cm}^2 : \text{R}_{\text{th tp-a}} = 55 \text{ }^{\text{o}}\text{C/W}$ $2.25 \text{ cm}^2 : \text{R}_{\text{th tp-a}} = 45 \text{ }^{\text{o}}\text{C/W}$ $4 \text{ cm}^2 : \text{R}_{\text{th tp-a}} = 40 \text{ }^{\text{o}}\text{C/W}$

Note: Any temperature can be calculated by using the dissipation graphs and the above thermal model.

FREE-AIR OPERATION

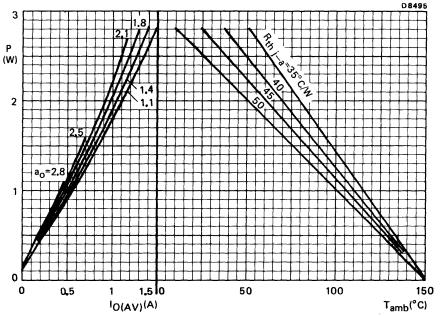


Fig.3 The right-hand part shows the interrelationship between the power (derived from the left-hand graph) and the maximum permissible ambient temperature.

Output form factor $a_0 = I_O(RMS)/I_O(AV) = 0.707 \times I_F(RMS)/I_F(AV)$ per diode.

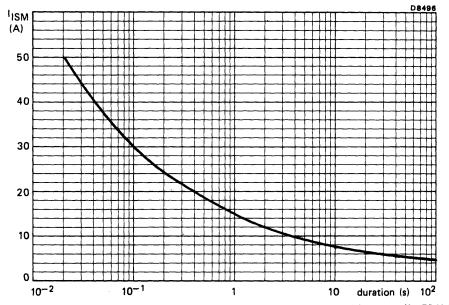
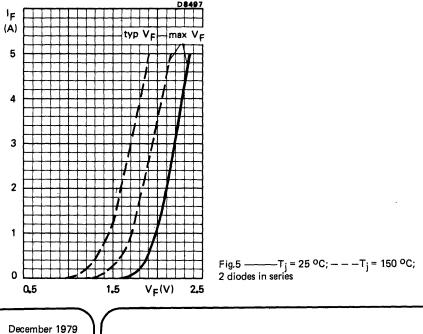



Fig.4 Maximum permissible non-repetitive peak input current based on sinusoidal currents (f = 50 Hz); T_i = 150 °C prior to surge; with reapplied V_{IWMmax};

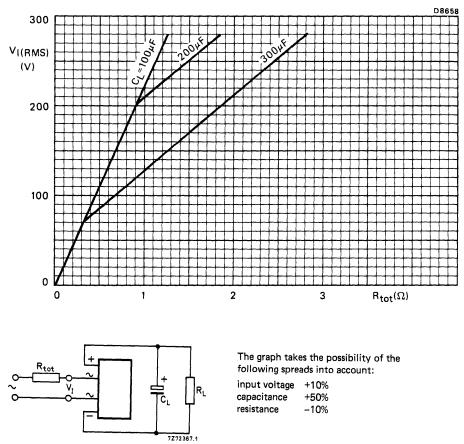


Fig.6 Minimum value of the total series resistance R_{tot} (including the transformer resistance) required to limit the peak inrush current.

7