# PARALLEL EFFICIENCY DIODES

Silicon double-diffused rectifier diodes in plastic envelopes, intended for use as efficiency diode in thyristor horizontal deflection circuits of colour television receivers.

The devices feature low forward recovery voltage and non-snap-off characteristics which makes them particularly suitable for this application.

| QUICK REFERENCE DATA            |                                        |  |  |  |
|---------------------------------|----------------------------------------|--|--|--|
|                                 | BY277-600R 750R                        |  |  |  |
| Repetitive peak reverse voltage | V <sub>RRM</sub> max. <u>600</u> 750 V |  |  |  |
| Working peak forward current    | I <sub>FWM</sub> max. 10 A             |  |  |  |
| Repetitive peak forward current | I <sub>FRM</sub> max. 20 A             |  |  |  |
| Reverse recovery time           | t <sub>rr</sub> < 400 ns               |  |  |  |

MECHANICAL DATA (see also page 2)

Dimensions in mm



Polarity of connections: tag 1 = anode, tag 2 = cathode.

The exposed metal base-plate is directly connected to tag 1.

| MECHANICAL DATA (continued)                                                                      |                      |                      |                |             |      |
|--------------------------------------------------------------------------------------------------|----------------------|----------------------|----------------|-------------|------|
| Net mass: 2,5 g                                                                                  |                      |                      |                |             |      |
| Recommended diameter of fixing screw: 3,5 mm                                                     |                      |                      |                |             |      |
| Torque on screw:<br>when using washer and heatsink compound: min.<br>max.                        | 0,95 Nn<br>1,5 Nn    | n (9,5 k<br>n (15 kg | g cm)<br>; cm) |             |      |
| Accessories:<br>supplied with device: washer<br>available on request: 56316 (mica insulating was | sher)                |                      |                |             |      |
| <b>RATINGS</b> Limiting values in accordance with the A                                          | bsolute N            | laximu               | n Syster       | m (IEC      | 134) |
| Voltages                                                                                         | BY277-60             |                      | -600R          | 750R        |      |
| Non-repetitive peak reverse voltage                                                              | V <sub>RSM</sub>     | max.                 | 600            | 800         | V    |
| Repetitive peak reverse voltage ( $\delta \leq 0, 01$ )                                          | V <sub>RRM</sub>     | max.                 | 600            | 750         | V    |
| Working reverse voltage 1)                                                                       | VRW                  | max.                 | 500            | 600         | V    |
| Currents                                                                                         |                      |                      |                |             |      |
| R.M.S. forward current                                                                           | I <sub>F</sub> (RMS) |                      | max.           | 3           | А    |
| Working peak forward current up to $T_{mb}$ = 112 °C                                             | I <sub>FWM</sub>     |                      | max.           | 10          | А    |
| Repetitive peak forward current                                                                  | IFRM                 |                      | max.           | 20          | А    |
| Non-repetitive peak forward current                                                              | IFSM                 | I <sub>FSM</sub>     |                | 50          | А    |
| Temperatures                                                                                     |                      |                      |                |             |      |
| Storage temperature                                                                              | Tstg                 | Tstg                 |                | -40 to +125 |      |
| Junction temperature                                                                             | Тj                   |                      | max.           | 125         | °C   |

1) At  $t_p \le 20 \ \mu s; \delta = t_p/T \le 0, 25;$  see page 9.

|                                                                                         |                      |    | BY277<br>SERIES |      |
|-----------------------------------------------------------------------------------------|----------------------|----|-----------------|------|
| THERMAL RESISTANCE                                                                      |                      |    |                 |      |
| From junction to mounting base                                                          | R <sub>th j-mb</sub> | =  | 4,5             | °C/W |
| Transient thermal impedance (t = $1 \text{ ms}$ )                                       | z <sub>th j-mb</sub> | =  | 0,3             | °C/W |
| Influence of mounting method                                                            |                      |    |                 |      |
| 1. Heatsink mounted                                                                     |                      |    |                 |      |
| From mounting base to heatsink                                                          |                      |    |                 |      |
| a. with heatsink compound<br>b. with heatsink compound and                              | R <sub>th</sub> mb-h | =  | 1,5             | °C/W |
| 56316 mica washer                                                                       | Rth mb-h             | == | 2,7             | °C/W |
| <ul> <li>c. without heatsink compound</li> <li>d. without heatsink compound;</li> </ul> | R <sub>th</sub> mb-h | =  | 2,7             | °C/W |
| with 56316 mica washer                                                                  | R <sub>th mb-h</sub> | =  | 5               | °C/W |

#### 2. Free air operation

н

The quoted values of  $R_{th j-a}$  should be used only when no leads of other dissipating components run to the same tie-points.

From junction to ambient in free air mounted on a printed-circuit board at a = maximum lead length and with a copper laminate a. > 1 cm<sup>2</sup> b. < 1 cm<sup>2</sup> Rth j-a = 50 °C/W Rth j-a = 55 °C/W

at a lead length a = 3 mm and with a copper laminate c. > 1 cm<sup>2</sup> Rth j-a = 55 °C d. < 1 cm<sup>2</sup> Rth j-a = 60 °C



H

7Z62314

## CHARACTERISTICS

| Forward voltage                                                                                                                      |                     |   |      |                  |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------|---|------|------------------|
| $I_F = 10 \text{ A}; T_j = 25 ^{o}C$                                                                                                 | v <sub>F</sub>      | < | 1,4  | V <sup>1</sup> ) |
| Reverse current                                                                                                                      |                     |   |      |                  |
| $V_R = V_{RWmax}; T_j = 100 \text{ °C}$                                                                                              | IR                  | < | 0, 2 | mA               |
| Reverse recovery when switched from                                                                                                  |                     |   |      |                  |
| IF = 2 A to $V_R \ge 30$ V;<br>-dIF/dt = 20 A/ $\mu$ s: Tj = 25 °C<br>Recovery charge                                                | Qs                  | < | 0,9  | μC               |
| $I_F = 1 A \text{ to } V_R \ge 30 \text{ V};$<br>-dI <sub>F</sub> /dt = 20 A/µs; T <sub>j</sub> = 25 <sup>o</sup> C<br>Recovery time | trr                 | < | 400  | ns               |
| Maximum slope of the reverse recovery current                                                                                        |                     |   |      |                  |
| (in horizontal deflection circuits)<br>when switched from<br>$I_{\rm F} = 5 \text{ A to } V_{\rm R} \ge 30 \text{ V}$ : with         | 1 <b>17</b> / 1. 1  |   | ·    |                  |
| $-a_{\rm F}/a_{\rm f} = 1 {\rm A}/\mu s;  1_{\rm j} = 25 {}^{\circ}{\rm C}$                                                          | al <sub>R</sub> /dt | < | 2    | A/µs             |



 $^{1}\ensuremath{)}$  Measured under pulse conditions to avoid excessive dissipation.

# CHARACTERISTICS (continued)

# Forward recovery when switched to

| $I_{\rm F} = 1  \rm A$ ; $T_{\rm i} = 25  {}^{\rm O}{\rm C}$ |          |   |     |    |
|--------------------------------------------------------------|----------|---|-----|----|
| Recovery time                                                | tfr      | < | 0,3 | μs |
| Recovery voltage                                             | Vfr      | < | 13  | V  |
| $I_{\rm F} = 20 \text{ mA}; T_{\rm j} = 25 \text{ °C}$       |          |   |     |    |
| Recovery time                                                | tfr      | < | 0,3 | μs |
| Recovery voltage                                             | $v_{fr}$ | < | 5   | V  |



#### MOUNTING INSTRUCTIONS

- 1. Soldered joints must be at least 2,5 mm from the seal.
- 2. The maximum permissible temperature of the soldering iron or bath is 270 °C; contact with the joint must not exceed 3 seconds.
- 3. The devices should not be immersed in oil, and few potting resins are suitable for re-encapsulation. Advice on these materials is available on request.
- 4. Leads should not be bent less than 2,5 mm from the seal. Exert no axial pull when bending.
- 5. For good thermal contact heatsink compound should be used between base-plate and heatsink.

### **OPERATING NOTES**

Dissipation and heatsink considerations :

a. The various components of junction temperature rise above ambient are illustrated below:



b. The method of using the graph on page 7 is as follows: Starting with the required current on the  $I_{FWM}$  axis, trace upwards to meet the appropriate 625/819-curve. Trace right horizontally and upwards from the appropriate value on the  $T_{amb}$  scale. The intersection determines the Rth mb-a. The heatsink thermal resistance value (Rth h-a) can now be calculated from:

$$R_{th h-a} = R_{th mb-a} - R_{th mb-h}$$
.

Any measurement of heatsink temperature should be made immediately adjacent to the device.





April 1977

7



Thermal resistance  $R_{thh-a}$  from aluminium heatsink to ambient (free air) versus heatsink surface (one side). 1, 2 and 3 are thicknesses in mm, a is for a bright surface, b is for a black surface.

8

### APPLICATION INFORMATION



