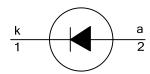


UNISONIC TECHNOLOGIES CO., LTD

BYC8-600 **Preliminary DIODE**

ULTRAFAST, LOW SWITCHING LOSS RECTIFIER DIODE

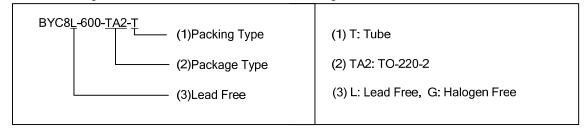
DESCRIPTION

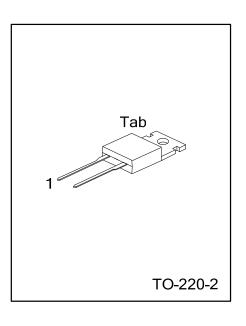

The UTC BYC8-600 is a rectifier diode. It provides the designers with ultra-fast switching and low switching loss in associated MOSFET.

The UTC BYC8-600 is generally applied in continuous current mode(CCM), power factor correction (PFC), half-bridge lighting ballasts and half-bridge/full-bridge switched mode power supplies.

FEATURES

- * Low Reverse Recovery Current
- * Ultra-Fast Switching
- * Low Switching Loss In Associated MOSFET
- * Low Thermal Resistance





ORDERING INFORMATION

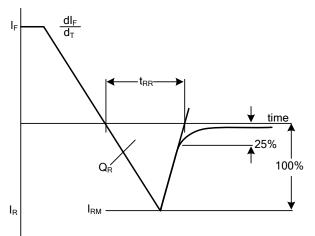
Ordering Number		Package	Pin Assignment			Packing	
Lead Free Plating	Halogen Free	Fackage	1	2	Tab	Facking	
BYC8L-600-TA2-T	BYC8G-600-TA2-T	TO-220-2	K	Α	K	Tube	

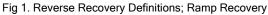
Note: Pin Assignment: A: Anode, K: Cathode, Tab: Mounting Base

ABSOLUTE MAXIMUM RATINGS

PARAMETE	SYMBOL	RATINGS	UNIT	
Peak Repetitive Reverse Voltage		V_{RRM}	600	V
Crest Working Reverse Voltage	V_{RWM}	600	V	
Average Forward Current	square-wave pulse;δ =0.5; T _{Tab} ≤109°C	I _{F(AV)}	8	Α
Repetitive Peak Forward Current	square-wave pulse; δ =0.5; t_P = 25 μ s, $T_{Tab} \le 109$ °C	I _{FRM}	16	А
Non-Repetitive Peak Forward Current.	t_P =8.3ms,sine-wave pulse; T_J =150°C		60	Α
	t_P =10ms,sine-wave pulse; T_J =150°C	I _{FSM}	55	А
Operating Junction Temperature	T_J	150	°C	
Storage Temperature		T _{STG}	-40 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.


■ THERMAL DATA


PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	60	K/W
Junction to Tab	θ_{JB}	2.2	K/W

■ **ELECTRICAL CHARACTERISTICS** (T_J =25°C, unless otherwise specified)

l .						+
PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
		I _F =8A, T _J =25°C		2	2.9	V
Forward Voltage	V _F	I _F =8A, T _J =150°C		1.4	1.85	V
		I _F =16A, T _J =150°C		1.7	2.3	V
Reverse Current	I _R	V _R =600V		9	150	μΑ
		V _R =500V, T _J =100°C		1.1	3	mA
Recovered Charge	Q_R	I _F =1A, dI _F /dt=100A/μs, T _J =25°C		12		nC
Reverse Recovery Time		$I_F = 1A$, $V_R = 30V$, $dI_F / dt = 50A / \mu s$, $T_J = 25$ °C		30	52	ns
		$I_F=8A, V_R=400V, T_J=100^{\circ}C$		32	40	ns
		$dI_F/dt=500A/\mu s$ $T_J=25$ °C (See Figure 1)	19		ns
Peak Reverse Recovery Current	I _{RM}	I _F =8A,V _R =400V, dI _F /dt=50A/µs, T _J =125°C		1.5	5.5	Α
		$I_F=8A, V_R=400V, dI_F/dt=500A/\mu s, T_J=100°C$		9.5	12	Α
Forward Recovery Voltage	V_{FR}	I _F =10A, dI _F /dt=100A/μs(See Figure2)		8	10	V

TYPICAL CHARACTERISTICS

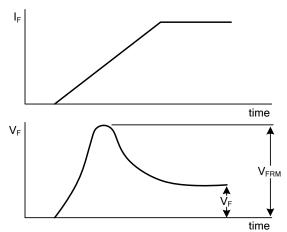


Fig 2. Forward Recovery Definitions

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.