BYM26C

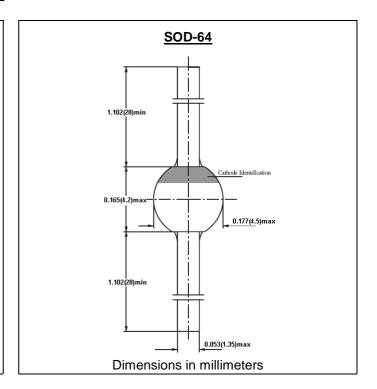
SINTERED GLASS JUNCTION ULTRAFAST AVALANCHE RECTIFIER

VOLTAGE: 600V CURRENT: 2.3A

FEATURE

Glass passivated
High maximum operating temperature
Low leakage current
Excellent stability
Guaranteed avalanche energy absorption capability

MECHANICAL DATA


Case: SOD-64 sintered glass case

Terminal: Plated axial leads solderable per

MIL-STD 202E, method 208C

Polarity: color band denotes cathode end

Mounting position: any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

(single-phase, half-wave, 60HZ, resistive or inductive load rating at 25°C, unless otherwise stated)

	SYMBOL	BYM26C	units
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	600	V
Maximum RMS Voltage	V_{RMS}	420	V
Maximum DC blocking Voltage	V_{DC}	600	V
Reverse Breakdown Voltage at I _R = 0.1mA	$V_{(BR)R}$	700min	V
Maximum Average Forward Rectified Current and Ttp=55°C; lead length=10mm	I _{FAV}	2.3	А
Peak Forward Surge Current at t=10ms half sine wave	I _{FSM}	45	А
Maximum Forward Voltage at Rated Forward Current and 25°C $I_F = 2.0A$	V _F	2.65	V
Maximum DC Reverse Current $Ta = 25^{\circ}C$ at rated DC blocking voltage $Ta = 150^{\circ}C$	I _R	10 150	μА
Maximum Reverse Recovery Time (Note 1)	Trr	30	nS
Non Repetitive Reverse Avalanche Energy	E _R	10	mJ
Diode Capacitance at f=1MHz,V _R =0V	C _d	85	pF
Typical Thermal Resistance (Note 2)	R _{th(ja)}	75	K/W
Storage and Operating Junction Temperature	Tstg, Tj	-65 to +175	$^{\circ}$

Note:

1. Reverse Recovery Condition $I_F = 0.5A$, $I_R = 1.0A$, $I_{RR} = 0.25A$

2. Device mounted on an epoxy-glass printed-circuit board, 1.5mm thick; thickness of Cu-layer ≥40 μ m

Rev.A1 www.gulfsemi.com

RATINGS AND CHARACTERISTIC CURVES BYM26C

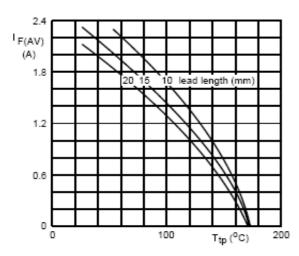


Fig.1 Maximum average forward current as a function of tie-point temperature (including losses due to reverse leakage).

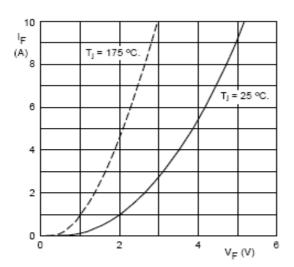


Fig. 3 Forward current as a function of forward voltage; maximum values.

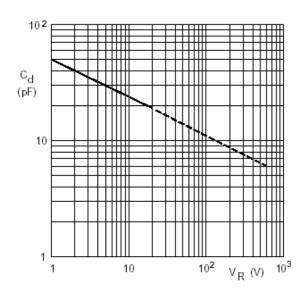


Fig.5 Diode capacitance as a function of reverse voltage; typical values.

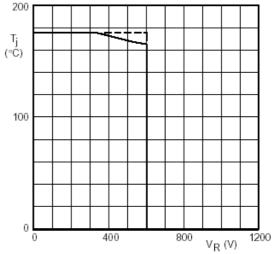


Fig. 2 Maximum permissible junction temperature as a function of reverse voltage.

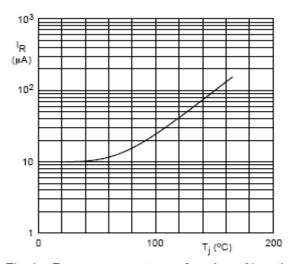


Fig.4 Reverse current as a function of junction temperature; maximum values.