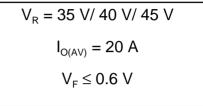
Product specification


BYV133, BYV133B series

FEATURES

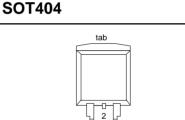
- Low forward volt drop
- Fast switching
- Reverse surge capability
- High thermal cycling performance
- Low thermal resistance

SYMBOL a1 1 k2 a2 3

QUICK REFERENCE DATA

GENERAL DESCRIPTION

Dual, common cathode schottky rectifier diodes in a conventional leaded plastic package and a surface mounting plastic package. Intended for use as output rectifiers in low voltage, high frequency switched mode power supplies.


The BYV133 series is supplied in the SOT78 conventional leaded package. The BYV133B series is supplied in the SOT404 surface mounting package.

PINNING

PIN	DESCRIPTION
1	anode 1 (a)
2	cathode (k) ¹
3	anode 2 (a)
tab	cathode (k)

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.		MAX.		UNIT
		BYV133- BYV133B-		35 35	40 40	45 45	
V_{RRM}	Peak repetitive reverse voltage		-	35	40	45	V
V_{RWM}	Working peak reverse voltage		-	35	40	45	V
V _R	Continuous reverse voltage	$T_{mb} \leq 120 \ ^{\circ}C$	-	35	40	45	V
I _{O(AV)}	Average rectified forward current (both diodes conducting)	square wave; $\delta = 0.5$; T _{mb} ≤ 120 °C	-		20		A
I _{FRM}	Repetitive peak forward current (per diode)	square wave; $\delta = 0.5$; T _{mb} ≤ 120 °C	-		20		A
_{FSM}	Non-repetitive peak forward current per diode	t = 10 ms t = 8.3 ms sinusoidal; $T_j = 125$ °C prior to surge; with reapplied V _{RRM(max)}	-		100 110		A A
I _{RRM}	Peak repetitive reverse surge current per diode	pulse width and repetition rate	-		1		A
T _j	Operating junction temperature	Interest of Jackson Strangeneration (Jackson Strangeneration)	-		150		°C
T _{stg}	Storage temperature		- 65		175		°C

1. It is not possible to make connection to pin 2 of the SOT404 pckage.

BYV133, BYV133B series

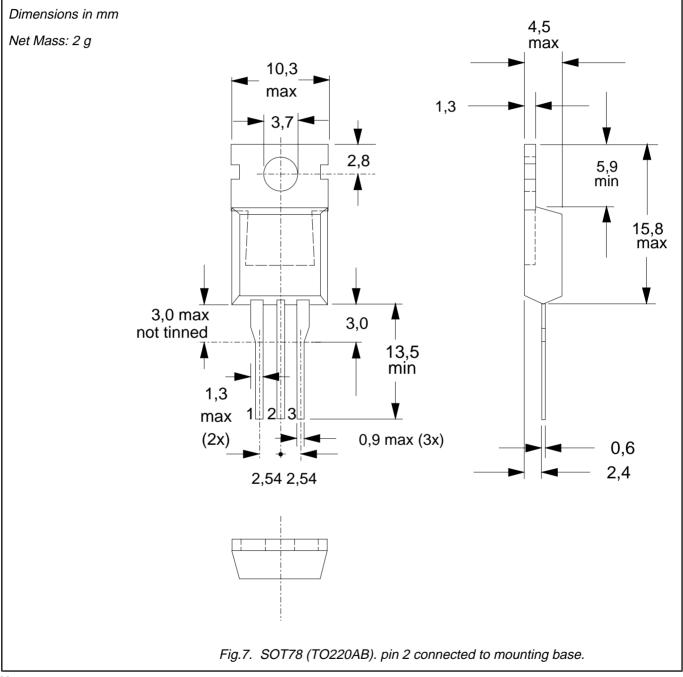
THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
R _{th j-mb} R _{th j-a}	to mounting base	per diode both diodes SOT78 package in free air SOT404 package, pcb mounted, minimum footprint, FR4 board	- - -	- 60 50	2.6 1.6 - -	K/W K/W K/W K/W

ELECTRICAL CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified

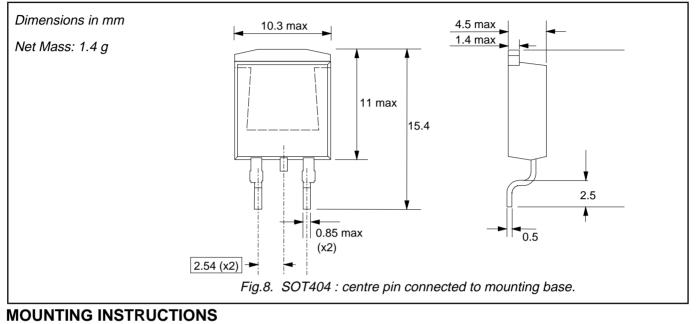
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _F	Forward voltage per diode	I _F = 7 A; T _j = 125°C I _F = 20 A	-	0.5 0.84	0.6 0.94	V
I _R	Reverse current per diode	$V_{R} = V_{RWM}$	-	0.1	0.8	mA mA
C _d	Junction capacitance per diode	$V_{R} = V_{RWM}$; $T_{j} = 100^{\circ}C$ $V_{R} = 5 V$; $f = 1 \text{ MHz}$, $T_{j} = 25^{\circ}C \text{ to } 125^{\circ}C$	-	210	-	pF

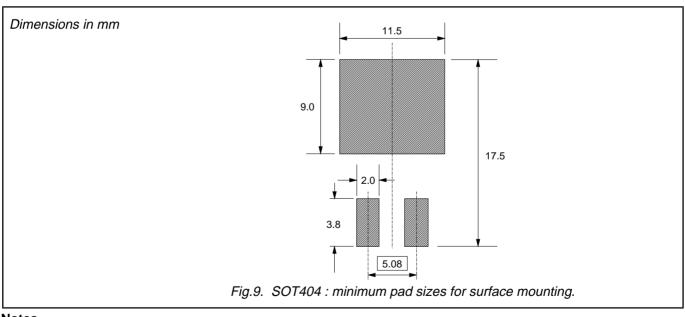

BYV133, BYV133B series

Rectifier diodes Schottky barrier

<u>Tmb(max) / C</u> 118.8 12 Forward dissipation, PF (W) Reverse current, IR (mA) 100 Vo = 0.418 V Rs = 0.026 Ohms D = 1.0 124 10 125 C 0.5 10 129.2 8 0.2-100 C 6 134.4 1 75 C 139.6 4 50 C to D 0.1 144.8 2 Tj = 25 C т 0.01 ____150 15 0 5 10 Average forward current, IF(AV) (A) 0 0 25 50 Reverse voltage, VR (V) Maximum forward dissipation $P_F = f(I_{F(AV)})$ per Fig.4. Typical reverse leakage current per diode; Fig.1. diode; square current waveform where $I_R = f(V_R)$; parameter T_i $I_{F(AV)} = I_{F(RMS)} \times \sqrt{D}.$ T<u>mb(max) / C</u> 124 Forward dissipation, PF (W) Cd / pF 10 1000 a = 1.57 Vo = 0.418 V Rs = 0.026 Ohms 1.9 2.2 8 28 129.2 4 134.4 6 100 139.6 4 2 144.8 10 150 0 10 2 4 6 8 Average forward current, IF(AV) (A) 1 100 0 2 10 8 VR / V Fig.2. Maximum forward dissipation $P_F = f(I_{F(AV)})$ per diode; sinusoidal current waveform where a = formFig.5. Typical junction capacitance per diode; $C_d = f(V_R); f = 1 \text{ MHz}; T_j = 25^{\circ}C \text{ to } 125^{\circ}C.$ factor = $I_{F(RMS)} / I_{F(AV)}$. Transient thermal impedance, Zth j-mb (K/W) Forward current, IF (A) 10 50 Tj = 25 C Tj = 125 C -40 1 30 typ 20 0.1 D = () max 10 t ⊤ ⊨— ` ™ 0.01 0 1us 10us 100us 1ms 10ms 100ms 1s 105 0.2 0.6 0.8 1.2 0 0.4 1 1.4 pulse width, tp (s) Forward voltage, VF (V) Fig.3. Typical and maximum forward characteristic Fig.6. Transient thermal impedance; per diode; $I_F = f(V_F)$; parameter T_i $Z_{th j-mb} = f(t_p).$

BYV133, BYV133B series


MECHANICAL DATA



Notes 1. Refer to mounting instructions for SOT78 (TO220) envelopes. 2. Epoxy meets UL94 V0 at 1/8".

BYV133, BYV133B series

MECHANICAL DATA

Notes

1. Plastic meets UL94 V0 at 1/8".

BYV133, BYV133B series

DEFINITIONS

Data sheet status				
Objective specification	ion This data sheet contains target or goal specifications for product development.			
Preliminary specification	r specification This data sheet contains preliminary data; supplementary data may be published late			
Product specification	This data sheet contains final product specifications.			
Limiting values				
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.				
Application information				
Where application information is given, it is advisory and does not form part of the specification.				
© Philips Electronics N.V. 1998				
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.				
The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.				

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.