# CONTROLLED AVALANCHE RECTIFIER DIODES

#### Also available to BS9333-F004

Diffused silicon diodes in a DO—1 metal envelope, capable of absorbing transients. They are intended for rectifier applications and particularly suited for series operation.

The series consists of the following reverse polarity types (anode to case):

BYX45-600R, BYX45-800R, BYX45-1000R, BYX45-1200R and BYX45-1400R.

## QUICK REFERENCE DATA

|                                                            |                                        | BYX45 | -600R      | 800R        | 1000R        | 1200R        | 1400R | . +-   |
|------------------------------------------------------------|----------------------------------------|-------|------------|-------------|--------------|--------------|-------|--------|
| Crest working reverse voltage<br>Reverse breakdown voltage | V <sub>RWM</sub><br>V <sub>(BR)R</sub> | max.  | 600<br>750 | 800<br>1000 | 1000<br>1250 | 1200<br>1450 |       | V<br>V |
| Average forward current                                    | l <sub>F</sub> (AV)                    | max.  |            |             | 1.5          |              |       | Α      |
| Non repetitive peak forward current                        | IFSM                                   | max.  |            |             | 40           |              |       | Α      |
| Non repetitive peak reverse power                          | PRSM                                   | max.  |            |             | 2.5          |              |       | kW     |

## MECHANICAL DATA

Fig. 1 DO-1

Dimensions in mm



# **RATINGS**

Limiting values in accordance with the Absolute Maximum System (IEC134)

| $\rightarrow$ | Voltages                                                                                                    |           | BYX45     | -600R            | 800R  | 1000R     | 1200R | 1400F | <u> </u> |
|---------------|-------------------------------------------------------------------------------------------------------------|-----------|-----------|------------------|-------|-----------|-------|-------|----------|
|               | Crest working reverse voltage                                                                               | $v_{RWM}$ | max.      | 600              | 800   | 1000      | 1200  | 1400  | ٧        |
|               | Continuous reverse voltage                                                                                  | $v_R$     | max.      | 600              | 800   | 1000      | 1200  | 1400  | V        |
|               | Currents                                                                                                    |           |           |                  |       | •         |       |       |          |
|               | Average forward current (averaged over any 20 ms period)                                                    |           |           | ۱F               | (AV)  | max.      |       | 1.5   | Α        |
|               | R.M.S. forward current                                                                                      |           |           | ۱F               | (RMS) | max.      |       | 2.4   | Α        |
|               | Repetitive peak forward current                                                                             |           |           | ۱F               | RM    | max.      |       | 15    | Α        |
|               | Non-repetitive peak forward current $t = 10$ ms (half sine-wave); $T_j = 150$ with reapplied $V_{RWMmax}$ . | OC prior  | to surge; |                  | SM    | max.      |       | 40    | Α        |
|               | $I^2$ t for fusing (t = 10 ms)                                                                              |           |           | l <sup>2</sup> 1 | t     | max.      |       | 8     | $A^2 s$  |
|               | Reverse power dissipation                                                                                   |           |           |                  |       |           |       |       |          |
|               | Repetitive peak reverse power dissipat $t = 10 \mu s$ (square-wave; $f = 50 Hz$ );                          |           | С         | PR               | RM    | max.      | 8     | 300   | W        |
|               | Non-repetitive peak reverse power diss<br>$t = 10 \mu s$ (square-wave)                                      | sipation  |           |                  |       |           |       |       |          |
|               | $T_j = 25$ °C prior to surge                                                                                |           |           |                  | SM    | max.      |       | 2.5   | kW       |
|               | T <sub>j</sub> = 150 °C prior to surge                                                                      |           |           | PR               | SM    | max.      | 8     | 300   | W        |
|               | Temperatures                                                                                                |           |           |                  |       |           |       |       |          |
|               | Storage temperature                                                                                         |           |           | $T_{stg}$        |       | -55 to +1 |       | 150   | οС       |
|               | Junction temperature                                                                                        |           |           | Τį               | -     | max.      |       | 150   | οС       |

#### THERMAL RESISTANCE

# Effect of mounting on thermal resistance Rth j-a

The quoted values apply when no other leads run to the tie-points. If leads of other dissipating components share the same tie-points, the thermal resistance will be higher than that quoted.

- 1. Mounted on solder tags at a lead-length a = 10 mm.  $R_{th\ i-a} = 60$  °C/W
- 2. Mounted on solder tags at a = maximum lead-length.  $R_{th\ i-a} = 70$  °C/W



- 3. Mounted on printed-wiring board at a = maximum lead-length.  $R_{th\ j-a}$  = 80 °C/W
- Mounted on printed-wiring board at a lead-length a = 10 mm. R<sub>th j-a</sub> = 90 °C/W



#### SOLDERING AND MOUNTING NOTES

- 1. At a soldering iron or bath temperature of up to 245 °C, the maximum permissible soldering time is 10 s if the joint is 5 mm from the seal, 3 s if it is 1.5 mm from the seal.
- 2. At a temperature between 245  $^{\circ}$ C and 400  $^{\circ}$ C (max.), the joint must be more than 5 mm from the seal and soldering time must not exceed 5 s.
- 3. Leads should not be bent less than 1.5 mm from the seal; exert no axial pull when bending.

# BYX45 SERIES

# CHARACTERISTICS

|                                                                   |                    | BYX45-600R |      | 800R   1000R |      | 1200R | 1400F | <u> </u> |
|-------------------------------------------------------------------|--------------------|------------|------|--------------|------|-------|-------|----------|
| Forward voltage<br>$I_F = 5 \text{ A}; T_j = 25 ^{\circ}\text{C}$ | V <sub>F</sub>     | <          | 1.45 | 1.45         | 1.45 | 1.45  | 1.45  | ٧*       |
| Reverse avalanche breakdown voltage                               | V <sub>(BR)R</sub> | >          | 750  | 1000         | 1250 | 1450  | 1650  | ٧        |
| $I_R = 1 \text{ mA}; T_j = 25  {}^{\circ}\text{C}$                |                    | <          | 2000 | 2000         | 2000 | 2200  | 2400  | ٧        |
| Reverse current<br>$V_R = V_{RWMmax}$ ; $T_i = 125$ °C            | I <sub>R</sub>     | <          | 100  | 100          | 100  | 100   | 100   | μΑ       |

<sup>\*</sup>Measured under pulse conditions to avoid excessive dissipation.







Fig.4

