RECTIFIER DIODES

Also available to BS9331-F129

Silicon rectifier diodes in metal envelopes similar to DO-4, intended for use in power rectifier applications.

The series consists of the following types:

Normal polarity (cathode to stud): BYX96-300 to 1600. Reverse polarity (anode to stud): BYX96-300R to 1600R.

QUICK REFERENCE DATA

		BYX96-300(R)		600(R)	1200(R)	1600(R)	
Repetitive peak reverse voltage	v_{RRM}	max.	300	600	1200	1600	V
Average forward current		[F(AV		max.		30	Α
Non-repetitive peak forward current		IFSM		max.		400	Α

MECHANICAL DATA

Dimensions in mm

Fig.1 DO-4: with metric M5 stud (ϕ 5 mm); e.g. BYX96-300(R).

Types with 10-32 UNF stud (ϕ 4,83 mm) are available on request. These are indicated by the suffix U; e.g. BYX96-300U(RU).

Supplied with device: 1 nut, 1 lock-washer

Nut dimensions across the flats, M5 thread: 8 mm, 10-32 UNF thread: 9.5 mm

Net mass: 7 g

Diameter of clearance hole: max. 5.2 mm

Supplied on request: see ACCESSORIES section

a version with insulated flying leads

The mark shown applies to normal polarity types.

Torque on nut: min. 0.9 Nm

(9 kg cm)

max. 1.7 Nm

(17 kg cm)

Voltages 1)	BYX96-300(R)	600(R)	1200(R)	1600(R)	
Non-repetitive peak reverse					

max.

max.

max.

max.

300

300

200

200

600

600

400

400

R_{th j-mb}

Rth mb-h

Rth mb-h

Zth j-mb

if $R_{th j-a} = 6 \text{ °C/W}$, then $T_{j max} = 125 \text{ °C}$.

1200

1200

800

800

1600

1600

800

800

٧

V

V

ν

°C/W

°C/W

°C/W

°C/W

1,0

0, 5

0,3

0, 2

VRSM

VRRM

 v_{RWM}

 v_R

voltage ($t \le 10 \text{ ms}$)

Repetitive peak reverse voltage ($\delta \leq 0,01$)

Crest working reverse voltage

From junction to mounting base

From mounting base to heatsink without heatsink compound

Transient thermal impedance; t = 1 ms

with heatsink compound

Continuous reverse voltage

Currents

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Average forward current (averaged	_			
over any 20 ms period) up to T_{mb} = 125 ^{o}C	^I F(AV)	max.	30	Α
R.M.S. forward current	IF(RMS)	max.	48	A
Repetitive peak forward current	IFRM	max.	400	A
Non-repetitive peak forward current (t = 10 ms; half sine-wave) T _i = 175 °C prior to surge;				
with reapplied V _{RWMmax}	^I FSM	max.	400	Α
I^2t for fusing (t = 10 ms)	I ² t	max.	800	A ² s
Temperatures				
Storage temperature	T_{stg}	-55 to +	175	oС
Junction temperature	$T_{\mathbf{j}}$	max.	175	οС
THERMAL RESISTANCE				

¹⁾ To ensure thermal stability: $R_{th\ j-a} \le 2\ ^{o}C/W$ (continuous reverse voltage) or $\le 8\ ^{o}C/W$ (a.c.)

For smaller heatsinks $T_{j\ max}$ should be derated. For a.c. see page 4.

For continuous reverse voltage: if $R_{th\ j-a} = 4\ ^{o}C/W$, then $T_{j\ max} = 138\ ^{o}C$,

CHARACTERISTICS

Forward voltage

$$I_F = 100 \text{ A}; T_j = 25 \text{ }^{\circ}\text{C}$$

Reverse current

everse current $V_R = V_{RWMmax}$; $T_i = 125$ °C

 I_{R} < 1 mA

 $V_{F} < 1,7 V^{1}$

OPERATING NOTES

- The top connector should neither be bent nor twisted; it should be soldered into the circuit so that there is no strain on it.
 During soldering the heat conduction to the junction should be kept to a minimum.
- 2. Where there is a possibility that transients, due to the energy stored in the transformer, will exceed the maximum permissible non-repetitive peak reverse voltage, see General Section for information on damping circuits.

*) T_{mb} -scale is for comparison purposes only and is correct only for $R_{th\ mb-a} \le 6,5$ °C/W

