

C122 SERIES

SILICON CONTROLLED RECTIFIERS

FEATURES

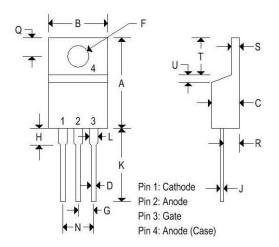
- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Characteristics	C122F	C122A	C122B	C122C	C122D	C122E	C122M	Units
	CIZZF	CIZZA	CIZZD	CIZZC	CIZZD			Ullits
$V_{RROM}^{\Delta} V_{DROM}^{\Delta}$	50	100	200	300	400	500	600	V
$I_{T(RMS)}(T_C = 75^{\circ}C, \theta = 180^{\circ})$				8				Α
I _{TSM} for one full cycle of applied principal								
voltage				200				
400 Hz						Α		
60 Hz	100 85							
50 Hz								
di/dt $V_D = V_{DROM}$, $I_{GT} = 80mA$, $t_r = 0.5\mu s$	100						A/μs	
I^2 t $T_1 = -65 \text{ to } +100^{\circ}\text{C}, t = 1 \text{ to } 8.3 \text{ ms}$	40					A ² s		
P _{GM} * (for 10μs max)	16					W		
P _{G(AV)} * (averaging time = 10 ms max)	0.5					W		
T _{stg}	-65 to +150						°C	
T _c	-65 to +100						°C	
T _T During soldering for 10 s maximum	250						°C	

 $[\]triangle$ These values do not apply if there is a positive gate signal. Gate must be open or negatively biased.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)


Characteristics		Units			
Characteristics	Min	Тур	Max	Units	
I_{DOM} or I_{ROM} $V_D = V_{DROM}$ or $V_R = V_{RROM}$, $T_C = 100^{\circ}$ C	-	0.1	0.5	mA	
V _T I _T = 16A, T _C = 25°C	-	1.45	1.83	V	
I_{GT} $V_D = 12V (DC), R_L = 30\Omega, T_C = 25^{\circ}C$	-	10	15	mA	
V_{GT} $V_D = 12V (DC), R_L = 30\Omega, T_C = 25^{\circ}C$	-	1.0	1.5	V	
I _{HO} T _c = 25°C	-	20	30	mA	
dv/dt $V_D = V_{DROM}$ exponential voltage rise, $T_C = 100^{\circ}C$	10	100	-	V/μs	
t_{gt} $V_D = V_{DROM}$, $I_T = 4.5A$, $I_T = 2A$, $I_{GT} = 80mA$, 0.1 μ s rise time, $T_C = 25^{\circ}$ C	-	1.6	2.5	μs	
t _q V _D = V _{DROM} , I _T = 2A, t _p = 50μs, dv/dt = 200V/μs, di/dt = -10A/μs, I _{GT} = 200mA @ t _{ON} , T _C = 75°C	-	10	35	μѕ	
$R_{\theta JC}$	-	-	1.8	°C/W	
$R_{\theta JA}$	-	-	75	C/W	

^{*} Any values of peak gate current or peak gate voltage which result in equal or lower power are permissible.

MECHANICAL CHARACTERISTICS

Case:	TO-220AB		
Marking:	Body painted, alpha-numeric		
Polarity: Cathode band			

TO-220AB Millimeters Inches Min Min Max 14.600 0.575 0.620 15.750 В 0.380 0.405 9.650 10.290 С 0.160 0.190 4.060 4.820 D 0.025 0.035 0.640 0.890 0.142 0.147 3.610 3.730 0.105 2.670 0.095 2.410 0.110 0.155 2.790 3.930 0.014 0.022 0.360 0.560 0.500 0.562 12.700 14.270 0.045 0.055 1.140 1.390 4.830 5.330 0.190 0.210 3.040

0.080

0.045

0.235

0.045

S

Т

U

٧

0.110

0.055

0.255

0.050

0.080

2.040

1.140

5.970

1.140

2.790

1.390

6.480

1.270

2.030

C122 SERIES

SILICON CONTROLLED RECTIFIERS

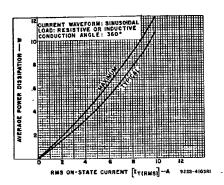


Fig. 1 - Power dissipation vs. on-state current.

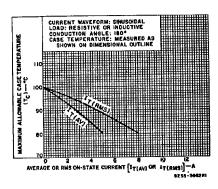


Fig. 2 --- Maximum allowable case temperature vs. on-state current.

C122 SERIES

SILICON CONTROLLED RECTIFIERS

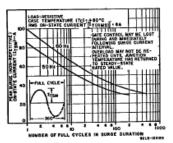


Fig. 3 — Allowable peak surge on-state current vs. surge duration.

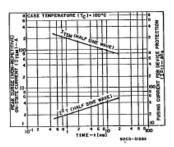


Fig. 4 — Peak surge on-state current and fusing current as a function of time.

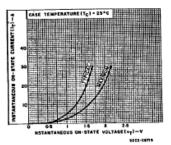


Fig. 5 — Instantaneous on-state current va

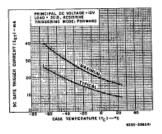


Fig. 6 — DC gate-trigger current vs. case temperature.

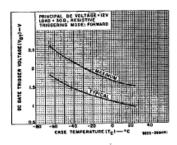


Fig. 7 — DC gate-trigger voltage vs. case temperature.

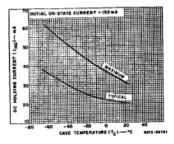


Fig. 8 — Holding current vs. case temperature

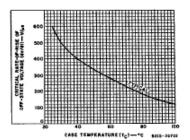


Fig. 9 — Critical rate of rise of off-state voltage vs. case temperature.

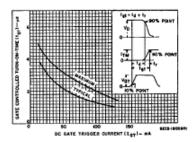


Fig. 10 — Gate-controlled turn-on time vs. gate trigger current.

C122 SERIES

SILICON CONTROLLED RECTIFIERS

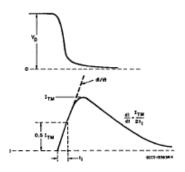


Fig. 11 — Rate of change of on-state current with time (defining di/dt).

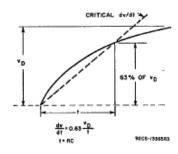


Fig. 12 — Rate of rise of off-state voltage with time (defining critical dv/dt).

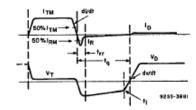


Fig. 13 — Relationship between instantaneous onstate current and voltage, showing reference points for measurement of circuit-commutated turn-off time (t_q).