

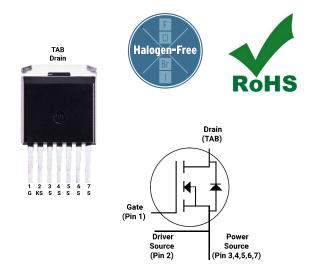
C2M1000170J

Silicon Carbide Power MOSFET C2M MOSFET Technology

N-Channel Enhancement Mode

 V_{DS} 1700 V $I_{D@25°C}$ 5.3 A $R_{DS(on)}$ 1.0 Ω

Features Package


- High blocking voltage with low R_{DS(on)}
- Easy to parallel and simple to drive
- Low parasitic inductance
- Low impedance package
- Separate driver source pin
- Ultra-low drain-gate capacitance
- Halogen-Free, RoHS compliant
- Fast intrinsic diode with low reverse recovery (Qrr)
- Wide creepage (~7mm) between drain and source

Benefits

- Higher system efficiency
- Smooth switching waveforms
- Reduced cooling requirements
- Minimum gate ringing
- Increased system reliability

Applications

- Auxiliary power supplies
- Switch Mode Power Supplies
- High-voltage capacitive loads

Part Number	Package	
C2M1000170J	TO-263-7	

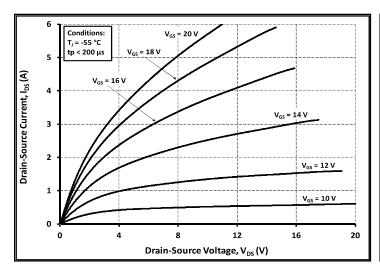
Maximum Ratings (T_c = 25 °C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note
V_{DSmax}	Drain - Source Voltage	1700	٧	V _{GS} = 0 V, I _D = 100 μA	
V_{GSmax}	Gate - Source Voltage	-10/+25	٧	Absolute maximum values	
V_{GSop}	Gate - Source Voltage	-5/+20	٧	Recommended operational values	
.	Continuous Drain Current	5.3	А	V _{GS} = 20 V, T _C = 25°C	Fig. 19
I _D		3.6		V _{GS} = 20 V, T _C = 100°C	
I _{D(pulse)}	Pulsed Drain Current	6.0	Α	Pulse width t _P limited by T _{jmax}	Fig. 22
P _D	Power Dissipation	78	W	T _c =25°C, T _J = 150 °C	Fig. 20
T_J , T_{stg}	Operating Junction and Storage Temperature	-55 to +150	°C		
T _L	Solder Temperature	260	°C	1.6mm (0.063") from case for 10s	

Electrical Characteristics ($T_c = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note	
$V_{(\text{BR})\text{DSS}}$	Drain-Source Breakdown Voltage	1700			٧	V _{GS} = 0 V, I _D = 100 μA		
.,		2.0	2.6	4	٧	$V_{DS} = V_{GS}$, $I_{D} = 0.5 \text{ mA}$	Fi., 11	F: 11
$V_{\text{GS(th)}}$	Gate Threshold Voltage		2.1		٧	$V_{DS} = V_{GS}$, $I_{D} = 0.5$ mA, $T_{J} = 150$ °C	Fig. 11	
I_{DSS}	Zero Gate Voltage Drain Current		1	100	μΑ	V _{DS} = 1.7 kV, V _{GS} = 0 V		
I_{GSS}	Gate-Source Leakage Current			250	nA	V _{GS} = 20 V, V _{DS} = 0 V		
D	Drain-Source On-State Resistance		1.0	1.4	Ω	V _{GS} = 20 V, I _D = 2 A	Fig. 4.5.6	
R _{DS(on)}	Drain-Source On-State Resistance		2.0		Ω	V _{GS} = 20 V, I _D = 2 A, T _J = 150 °C	Fig. 4,5,6	
	Transconductance		0.82		S	V _{DS} = 20 V, I _{DS} = 2 A	Fig. 7	
g fs	Transconductance		0.81		3	V _{DS} = 20 V, I _{DS} = 2 A, T _J = 150 °C		
C _{iss}	Input Capacitance		200			V _{GS} = 0 V		
C_{oss}	Output Capacitance		12		pF	V _{DS} = 1000 V	Fig. 17,18	
C_{rss}	Reverse Transfer Capacitance		1.3			f = 1 MHz		
E _{oss}	C _{oss} Stored Energy		7		μJ	Vac = 25 mV	Fig 16	
Eon	Turn-On Switching Energy		31			V _{DS} = 1.2 kV, V _{GS} = -5/20 V		
E _{off}	Turn Off Switching Energy		10		μJ	$I_D = 2 \text{ A}, R_{G(ext)} = 2.5 \Omega,$ L= 1368 μH, T _J = 150 °C	Fig. 26	
$t_{\text{d(on)}} \\$	Turn-On Delay Time		4					
t _r	Rise Time		4.8			$V_{DD} = 1.2 \text{ kV}, V_{GS} = -5/20 \text{ V}$ $I_D = 2 \text{ A}, R_{G(ext)} = 2.5 \Omega, R_1 = 600 \Omega$		
$t_{d(off)}$	Turn-Off Delay Time		10.8		ns	Timing relative to V _{DS}	Fig. 27	
t _f	Fall Time		40.4			Per IEC60747-8-4 pg 83		
$R_{G(int)}$	Internal Gate Resistance		24.8		Ω	f = 1 MHz, V _{AC} = 25 mV		
Q_gs	Gate to Source Charge		4.7			V _{DS} = 1.2 kV, V _{GS} = -5/20 V		
Q_{gd}	Gate to Drain Charge		5.4		nC	I _D = 2 A	Fig. 12	
Q_g	Total Gate Charge		13			Per IEC60747-8-4 pg 21		

Reverse Diode Characteristics


Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
.,	Diede Fermand Weller	3.8		٧	$V_{GS} = -5 \text{ V, } I_{SD} = 1 \text{ A, } T_{J} = 25 \text{ °C}$	Fia. 8. 9.
$V_{\mathtt{SD}}$	Diode Forward Voltage	3.3		٧	V _{GS} = -5 V, I _{SD} = 1 A, T _J = 150 °C	Fig. 8, 9, 10
Is	Continuous Diode Forward Current		4	Α	T _c = 25 °C	Note 1
t _{rr}	Reverse Recovery Time	20		ns	V _{GS} = -5 V, I _{SD} = 2 A T _J = 25 °C	
Q _{rr}	Reverse Recovery Charge	24		nC	V _R = 1.2 kV dif/dt = 1200 A/µs	Note 1
I	Peak Reverse Recovery Current	6.5		А	- απ/ατ - 1200 / γ μο	

Note (1): When using SiC Body Diode the maximum recommended $V_{\rm GS}$ = -5V

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
R _{eJC}	Thermal Resistance from Junction to Case	1.5	1.6	20.044		Fig. 01
R _{eJC}	Thermal Resistance from Junction to Ambient		40	°C/W		Fig. 21

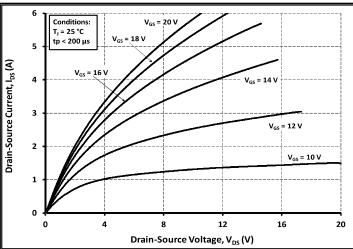
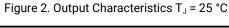
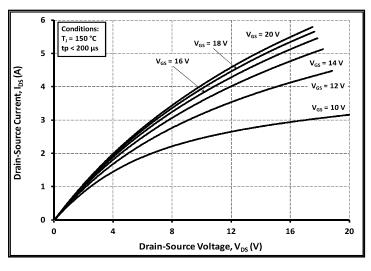




Figure 1. Output Characteristics T_J = -55 °C

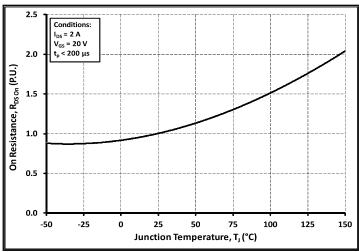


Figure 3. Output Characteristics $T_J = 150 \, ^{\circ}\text{C}$

Figure 4. Normalized On-Resistance vs. Temperature

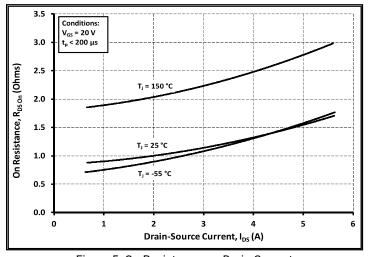


Figure 5. On-Resistance vs. Drain Current For Various Temperatures

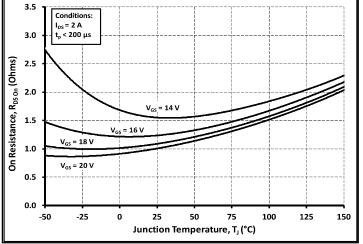
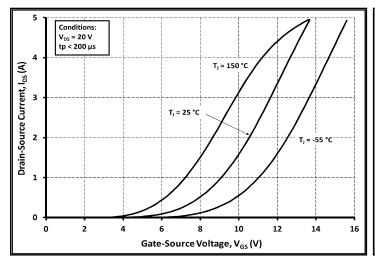



Figure 6. On-Resistance vs. Temperature For Various Gate Voltage

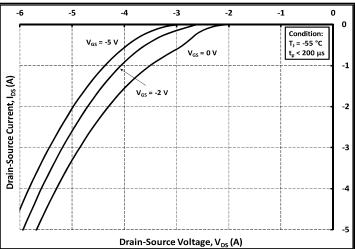


Figure 7. Transfer Characteristic for Various Junction Temperatures

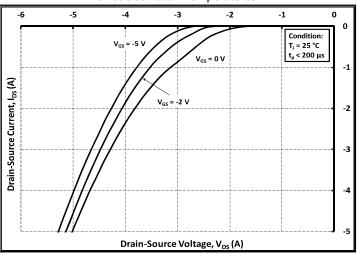


Figure 8. Body Diode Characteristic at -55 °C

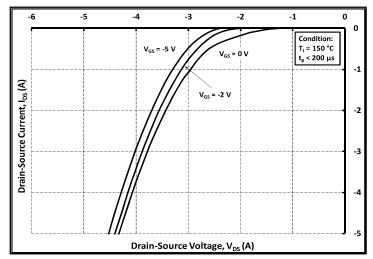


Figure 9. Body Diode Characteristic at 25 $^{\rm o}{\rm C}$

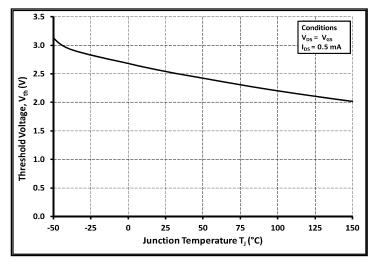


Figure 10. Body Diode Characteristic at 150 °C

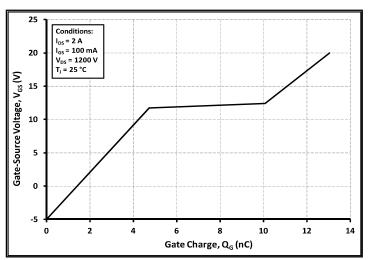
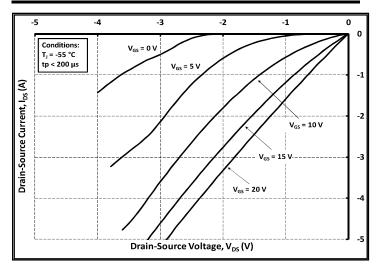



Figure 11. Threshold Voltage vs. Temperature

Figure 12. Gate Charge Characteristics

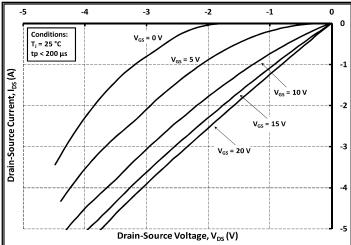
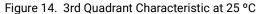
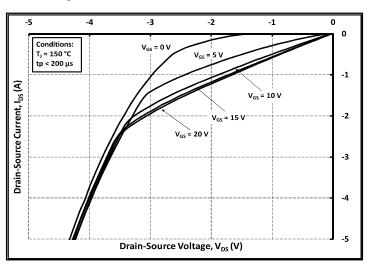




Figure 13. 3rd Quadrant Characteristic at -55 °C

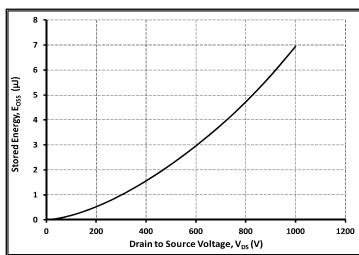
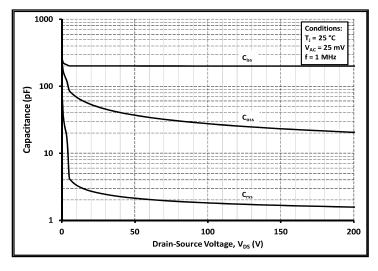



Figure 15. 3rd Quadrant Characteristic at 150 °C

Figure 16. Output Capacitor Stored Energy

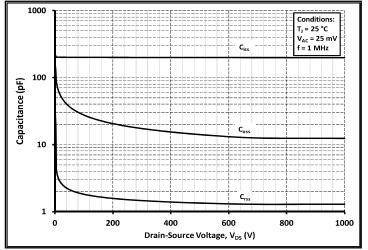


Figure 17. Capacitances vs. Drain-Source Voltage (0-200 V)

Figure 18. Capacitances vs. Drain-Source Voltage (0-1000 V)

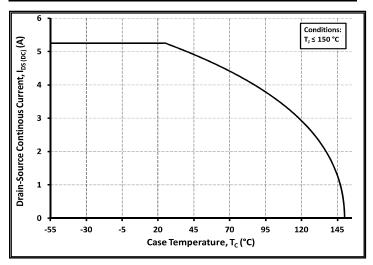


Figure 19. Continuous Drain Current Derating vs.

Case Temperature

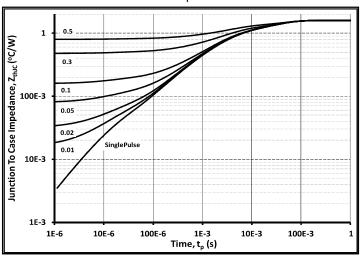


Figure 21. Transient Thermal Impedance (Junction - Case)

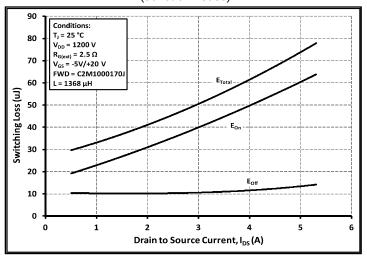


Figure 23. Clamped Inductive Switching Energy vs. Drain Current ($V_{DD} = 1200 \text{ V}$)

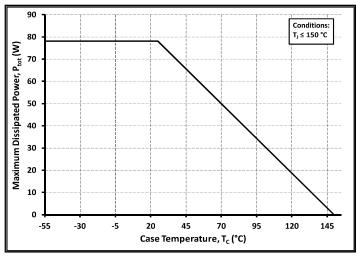


Figure 20. Maximum Power Dissipation Derating vs.

Case Temperature

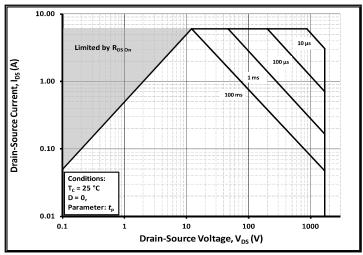


Figure 22. Safe Operating Area

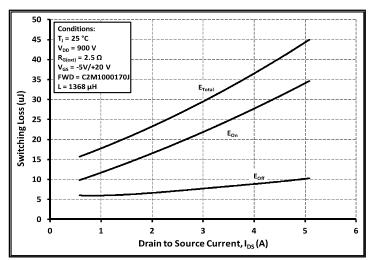
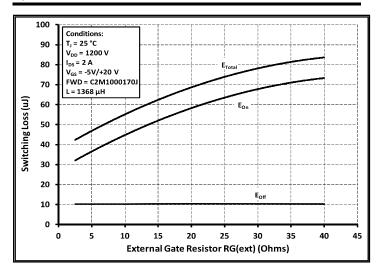



Figure 24. Clamped Inductive Switching Energy vs. Drain Current (V_{DD} = 900 V)

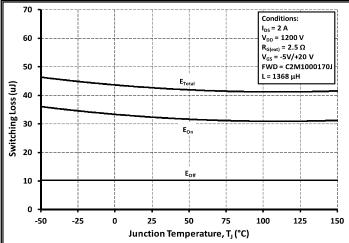
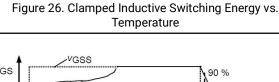
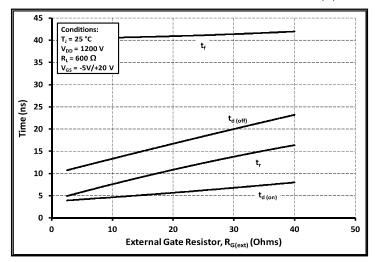




Figure 25. Clamped Inductive Switching Energy vs. $\boldsymbol{R}_{\text{G(ext)}}$

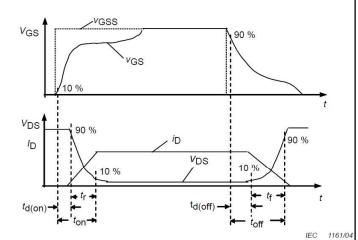


Figure 27. Switching Times vs. $R_{G(ext)}$

Figure 28. Switching Times Definition

Test Circuit Schematic

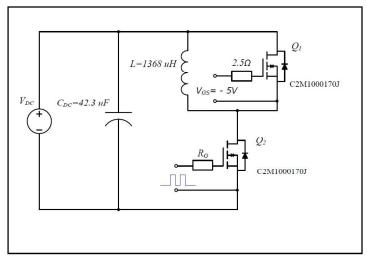
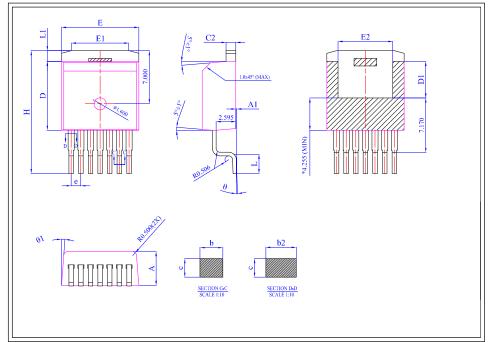
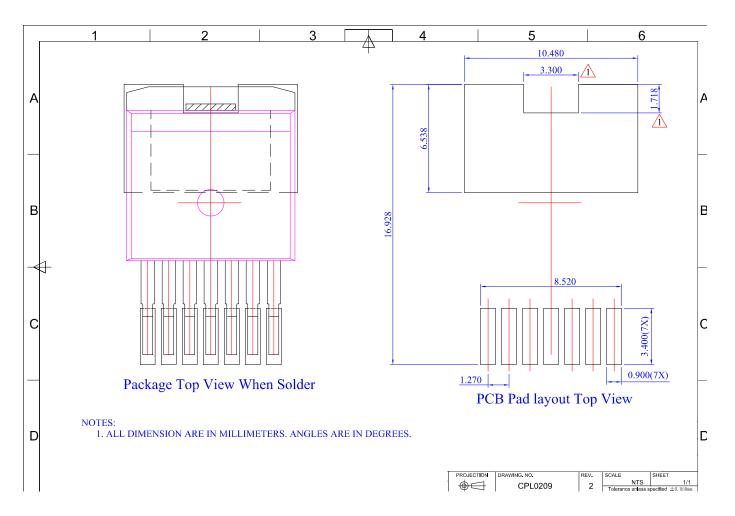


Figure 29. Clamped Inductive Switching Waveform Test Circuit


ESD Ratings

ESD Test	Total Devices Sampled	Resulting Classification
ESD-HBM	All Devices Passed 4000V	3A (>4000V)
ESD-MM	All Devices Passed 200V	A (>200V)
ESD-CDM	All Devices Passed 1000V	IV (>1000V)



Package Dimensions

TO-263-7

Dim	All Dimensions in Millimeters					
Dim	Min typ		Max			
А	4.300	4.435	4.570			
A1	0.00	0.125	0.25			
b	0.500	0.600	0.700			
b2	0.600	0.800	1.000			
С	0.330	0.490	0.650			
C2	1.170	1.285	1.400			
D	9.025	9.075	9.125			
D1	4.700	4.800	4.900			
E	10.130	10.180	10.230			
E1	6.500	7.550	8.600			
E2	6.778	6.778 7.223				
е		1.27				
Н	15.043	16.178	17.313			
L	2.324	2.512	2.700			
L1	0.968	1.418	1.868			
Ø	0°	4°	8°			
Ø1	4.5°	5°	5.5°			

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited
to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical
equipment, aircraft navigation or communication or control systems, air traffic control systems.

Related Links

- C2M PSPICE Models: http://wolfspeed.com/power/tools-and-support
- SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support
- SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support
- 60W Auxiliary power supply reference design: http://wolfspeed.com/power/tools-and-support