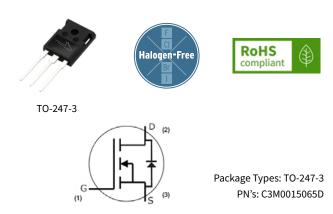


C3M0015065D


Silicon Carbide Power MOSFET C3M[™] MOSFET Technology N-Channel Enhancement Mode

Features

- 3rd generation SiC MOSFET technology
- High blocking voltage with low on-resistance
- High speed switching with low capacitances
- Fast intrinsic diode with low reverse recovery (Q_{rr})
- Halogen free, RoHS compliant

Typical Applications

- EV charging
- Solar PV inverters
- UPS
- SMPS
- DC/DC converters

Wolfspeed, Inc. is in the process of rebranding its products and related materials pursuant to the entity name change from Cree, Inc. to Wolfspeed, Inc. During this transition period, products received may be marked with either the Cree name and/or logo or the Wolfspeed name and/or logo.

Benefits

- Higher system efficiency
- Reduced cooling requirements
- Increased power density
- Increased system switching frequency
- Easy to parallel and simple to drive
- Enable new hard switching PFC topologies (Totem-Pole)

Key Parameters

Parameter	Symbol	Min.	Тур.	Мах	Unit	Conditions	Note
Drain - Source Voltage	rce Voltage V _{DS}			650	V	$T_c = 25^{\circ}C$	
Maximum Gate - Source Voltage	$V_{GS(max)}$	-8		+19		Transient	
Operational Gate-Source Voltage	V _{GS op}		-4/15			Static	Note 1
DC Continuous Drain Current	I _D			120	A	$V_{GS} = 15 \text{ V}, \text{ T}_{C} = 25 \text{ °C}, \text{ T}_{J} \le 175 \text{ °C}$	Fig. 19 Note 2
				96		$V_{GS} = 15 \text{ V}, \text{ T}_{C} = 100 \text{ °C}, \text{ T}_{J} \le 175 \text{ °C}$	
Pulsed Drain Current	I _{DM}			418		t _{Pmax} limited by T _{jmax} V _{GS} = 15V, T _C = 25 °C	Fig. 22
Power Dissipation	P _D			416	w	T _c = 25 °C, T _J = 175 °C	Fig. 20
Operating Junction and Storage Temperature	T _J , T _{stg}			-40 to +175	°C		
Solder Temperature	TL			260		According to JEDEC J-STD-020	
Mounting Torque	M _D			1 8.8	Nm Ibf-in	M3 or 6-32 screw	

Note (1): Recommended turn-on gate voltage is 15V with $\pm 5\%$ regulation tolerance, see Application Note PRD-04814 for additional details Note (2): Verified by design

Rev. 9, September 2024

Electrical Characteristics ($T_c = 25$ °C Unless Otherwise Specified)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	Note
Drain-Source Breakdown Voltage	V _{(BR)DSS}	650				V _{GS} = 0 V, I _D = 100 μA	
Gate Threshold Voltage		1.8	2.3	3.6	V	$V_{\rm DS} = V_{\rm GS}$, $I_{\rm D} = 15.5$ mA	- Fig. 11
	V _{GS(th)}		1.9			$V_{DS} = V_{GS}, I_{D} = 15.5 \text{ mA}, T_{J} = 175 \text{ °C}$	
Zero Gate Voltage Drain Current	I _{DSS}		1	50	μA	V _{DS} = 650 V, V _{GS} = 0 V	
Gate-Source Leakage Current	I _{GSS}		10	250	nA	$V_{GS} = 15 V, V_{DS} = 0 V$	
Durin Course On State Desistence	P	10.5	15	21	mΩ	$V_{gs} = 15 \text{ V}, I_{D} = 55.8 \text{ A}$	Fig.
Drain-Source On-State Resistance	R _{DS(on)}		20			V _{GS} = 15 V, I _D = 55.8 A, T _J = 175 °C	4,5,6
T	_		42		S	$V_{\rm DS} = 20 \text{ V}, \text{ I}_{\rm DS} = 55.8 \text{ A}$	Fig. 7
Transconductance	g _{fs}		40			$V_{DS} = 20 \text{ V}, \text{ I}_{DS} = 55.8 \text{ A}, \text{ T}_{J} = 175 \text{ °C}$	
Input Capacitance	C _{iss}		5011				
Output Capacitance	C _{oss}		289				Fig.
Reverse Transfer Capacitance	C _{rss}		31		рF	$V_{GS} = 0 V, V_{DS} = 400 V$	
Effective Output Capacitance (Energy Related)	C _{o(er)}		357		P.	$V_{GS} = 0.0, V_{DS} = 400 V$ f = 100 khz $V_{AC} = 25 \text{ mV}$	Note 3
Effective Output Capacitance (Time Related)	C _{o(tr)}		516				NOLE 3
C _{oss} Stored Energy	E _{oss}		29		μJ		Fig. 16
Turn-On Switching Energy (Body Diode)	E _{ON}		1500			$V_{DS} = 400 \text{ V}, V_{GS} = -4 \text{ V}/15 \text{ V}, I_D = 55.8 \text{ A},$ $R_{G(ext)} = 5 \Omega, L = 57.6 \mu\text{H}, T_J = 175 \text{ °C}$	Fig. 25
Turn Off Switching Energy (Body Diode)	E _{off}		700		μJ	FWD = Internal Body Diode of MOSFET	
Turn-On Switching Energy (External Diode)	E _{on}		1200			$V_{DS} = 400 \text{ V}, V_{GS} = -4 \text{ V}/15 \text{ V}, I_D = 55.8 \text{ A},$	
Turn Off Switching Energy (External Diode)	E _{off}		1000		μJ	$R_{G(ext)} = 5 \Omega, L = 57.6 \mu H, T_J = 175 °C$ FWD = External SiC DIODE	Fig. 25
Turn-On Delay Time	t _{d(on)}		22				
Rise Time	t,		125			$V_{DD} = 400 \text{ V}, V_{GS} = -4 \text{ V}/15 \text{ V}$ $I_D = 55.8 \text{ A}, R_{G(ext)} = 5 \Omega, L = 57.6 \mu\text{H}$	Fig. 26
Turn-Off Delay Time	t _{d(off)}		58		ns	Timing Relative to V _{DS} Inductive Load	
Fall Time	t _f		25				
Internal Gate Resistance	R _{G(int)}		1.5		Ω	f = 1 MHz, V _{AC} = 25 mV	
Gate to Source Charge	Q _{gs}		54				
Gate to Drain Charge	Q _{gd}		62		nC	$V_{DS} = 400 \text{ V}, \text{ V}_{GS} = -4 \text{ V}/15 \text{ V}$ $I_{D} = 55.8 \text{ A}$	Fig. 12
Total Gate Charge	Qg		188			Per IEC60747-8-4 pg 21	

Note (3): $C_{o(er)}$, a lumped capacitance that gives same stored energy as coss while V_{DS} is rising from 0 to 400 V.

 $C_{o(tr)}$, a lumped capacitance that gives same charging time as coss while V_{DS} is rising from 0 to 400 V.

Reverse Diode Characteristics

Parameter	Symbol	Тур.	Max.	Unit	Test Conditions	Note
Diode Forward Voltage	V	4.7			V_{GS} = -4 V, I _{SD} = 27.9 A, T _J = 25 °C	F. 0.0.10
	V _{SD}	4.2			$V_{GS} = -4 V, I_{SD} = 27.9 A, T_{J} = 175 °C$	- Fig. 8, 9, 10
Continuous Diode Forward Current	I _s		79		V_{GS} = -4 V, T_{C} = 25 °C	
Diode Pulse Current	I _{SM}		418	A	V _{GS} = -4 V, Pulse Width t _P Limited by T _{jmax}	
Reverse Recovery Time	t _{rr}	85		ns		
Reverse Recovery Charge	Q _{rr}	667		nC	V _{GS} = -4 V, I _{SD} = 55.8 A , V _R = 400 V dif/dt = 1500 A/μs, T _J = 175 °C	
Peak Reverse Recovery Current	I _{rrm}	17		A		
Reverse Recovery Time	t _{rr}	74		ns		
Reverse Recovery Charge	Q _{rr}	562		nC	$V_{GS} = -4 V, I_{SD} = 55.8 A, V_{R} = 400 V$ dif/dt = 1000 A/µs, T _J = 175 °C	
Peak Reverse Recovery Current	I _{rrm}	14		A		

Thermal Characteristics

Parameter	Symbol	Тур.	Unit	Test Conditions	Note
Thermal Resistance from Junction to Case	R _{ejc} 0.35		8C /M		F ' 01
Thermal Resistance from Junction to Ambient	R _{θJA}	40	°C/W		Fig. 21

Rev. 9, September 2024

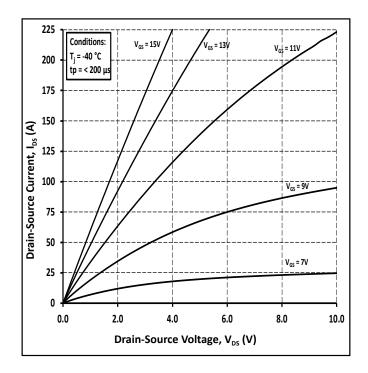


Figure 1. Output Characteristics $T_J = -40 \degree C$

Figure 2. Output Characteristics T_J = 25 °C

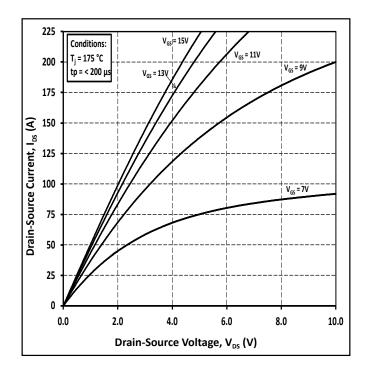
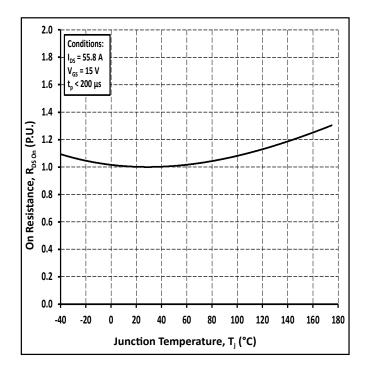
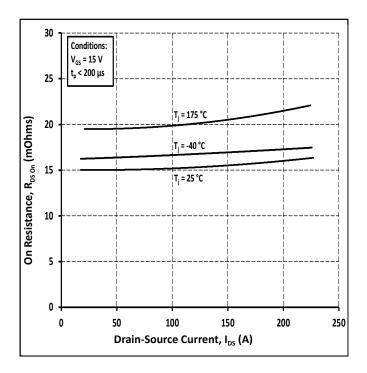
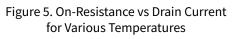
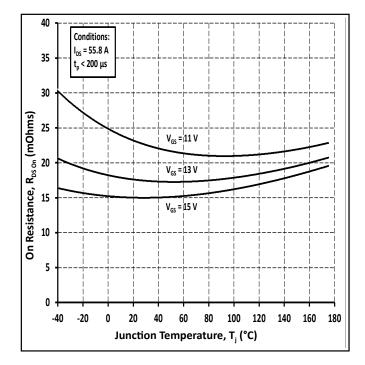
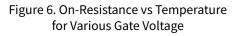


Figure 3. Output Characteristics T_J = 175 °C


Figure 4. Normalized On-Resistance vs Temperature


Rev. 9, September 2024

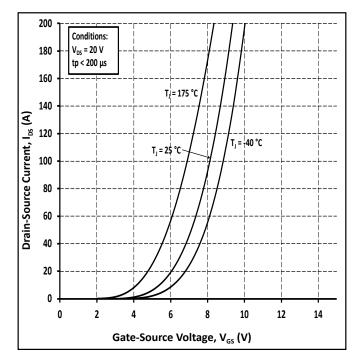


Figure 7. Transfer Characteristic for Various Junction Temperatures

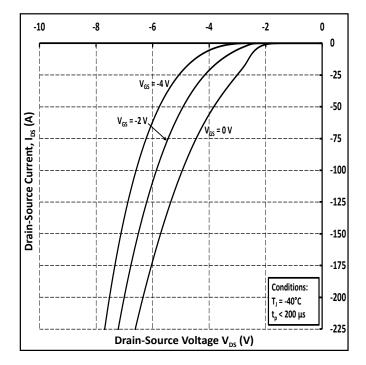


Figure 8. Body Diode Characteristic at -40 °C

Rev. 9, September 2024

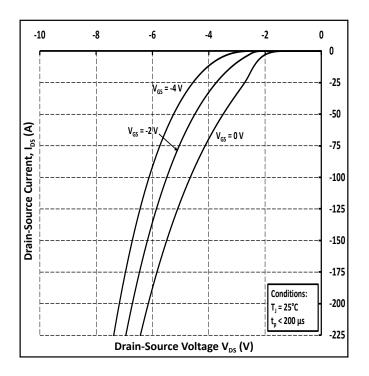


Figure 9. Body Diode Characteristic at 25 °C

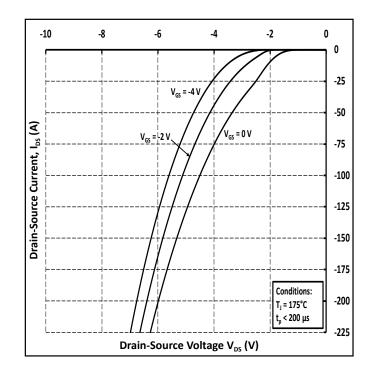


Figure 10. Body Diode Characteristic at 175 °C

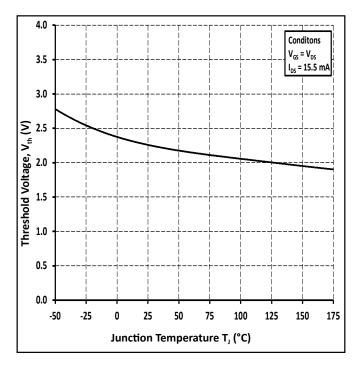


Figure 11. Threshold Voltage vs Temperature

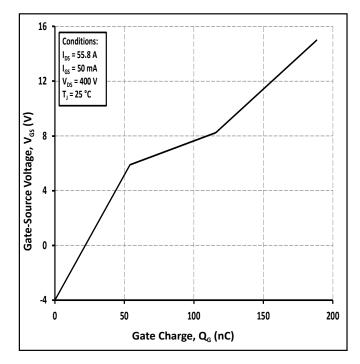


Figure 12. Gate Charge Characteristic

Rev. 9, September 2024

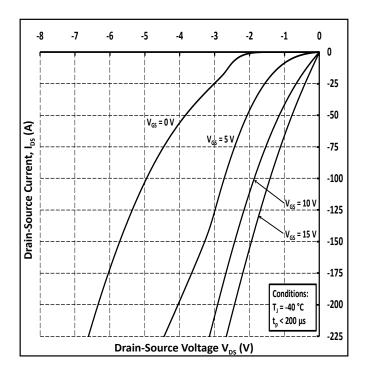


Figure 13. 3rd Quadrant Characteristic at -40 °C

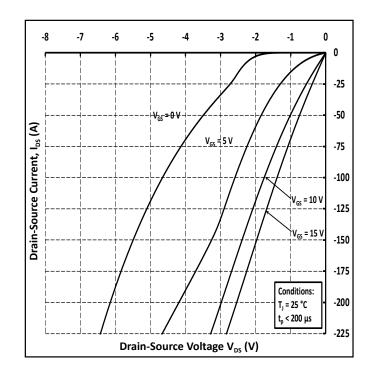


Figure 14. 3rd Quadrant Characteristic at 25 °C

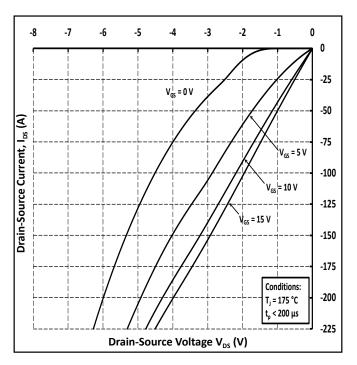
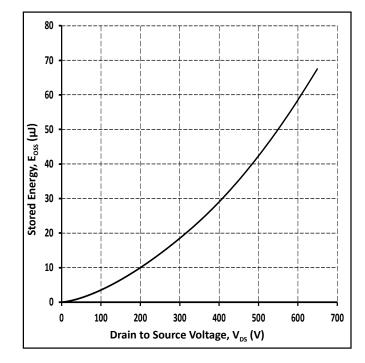



Figure 15. 3rd Quadrant Characteristic at 175 °C

Rev. 9, September 2024

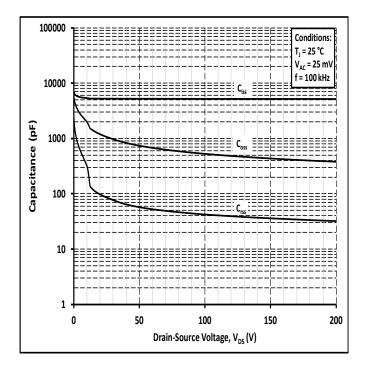
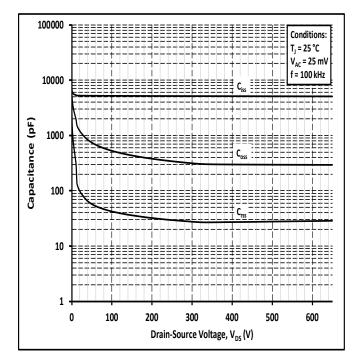
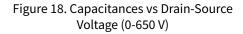




Figure 17. Capacitances vs Drain-Source Voltage (0-200 V)

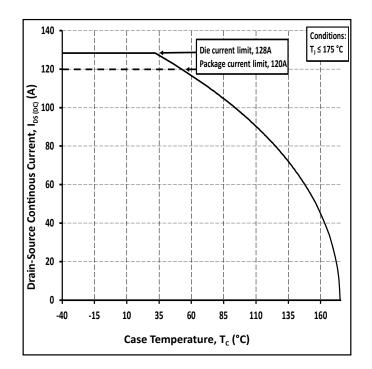
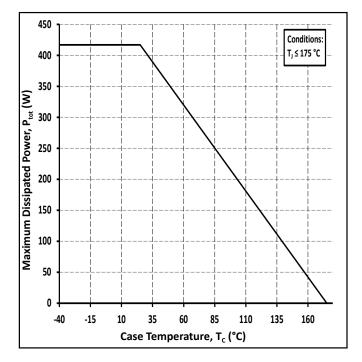
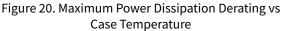




Figure 19. Continuous Drain Current Derating vs Case Temperature

8

Rev. 9, September 2024

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300 | wolfspeed.com/power

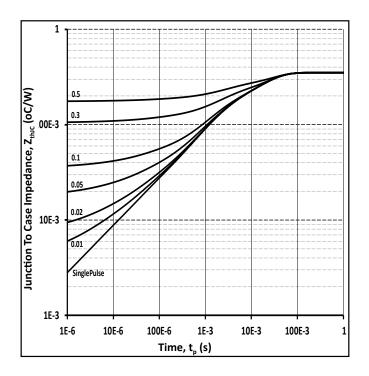


Figure 21. Transient Thermal Impedance (Junction - Case)

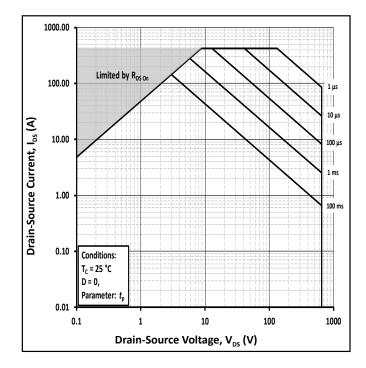


Figure 22. Safe Operating Area

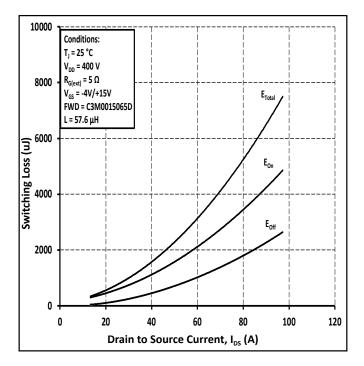


Figure 23. Clamped Inductive Switching Energy vs Drain Current (V_{DD} = 400 V)

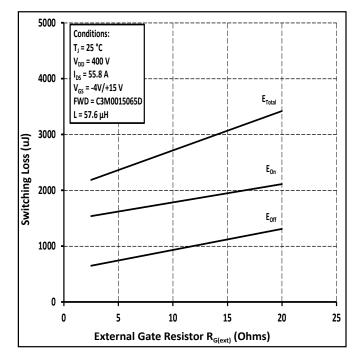


Figure 24. Clamped Inductive Switching Energy vs R_{G(ext)}

Rev. 9, September 2024

10

Typical Performance

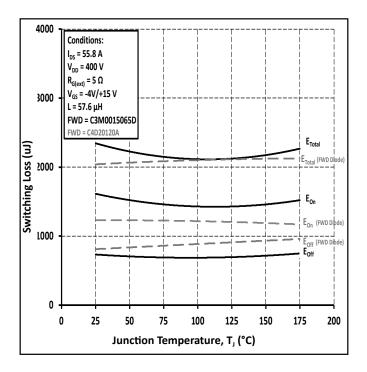


Figure 25. Clamped Inductive Switching Energy vs Temperature

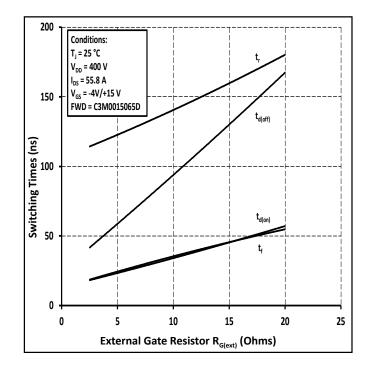


Figure 26. Switching Times vs $R_{G(ext)}$

Test Circuit Schematic

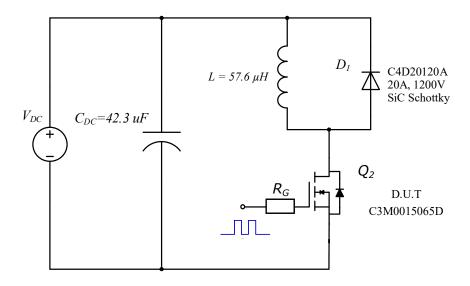
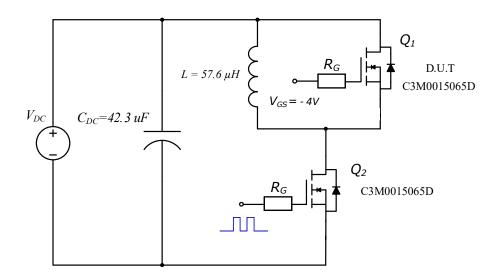
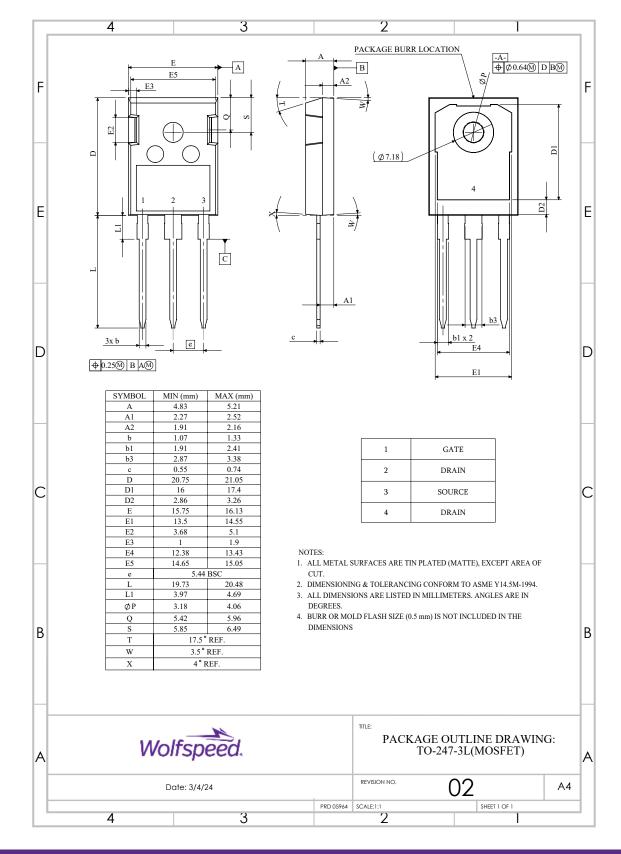


Figure 27. Clamped Inductive Switching Waveform Test Circuit

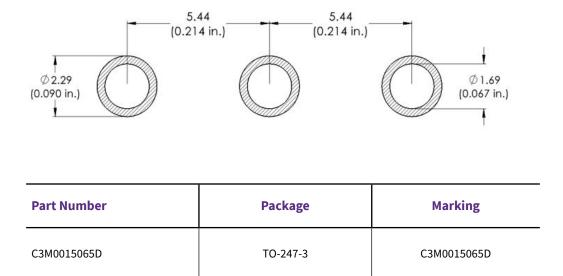



Figure 28. Body Diode Recovery Test Circuit

Rev. 9, September 2024

Package Dimensions

Package: TO-247-3



Rev. 9, September 2024

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300 | wolfspeed.com/power

Recommended Solder Pad Layout

Rev. 9, September 2024

Revision History

Current Revision	Date of Release	Description of Changes			
7	March-2022	N/A			
8	November-2023	Updated Wolfspeed branding, package drawing, package image, and solder pad layout, Table 1 layout revised			
9	September - 2024	Legal Disclaimer, POD, Diode Pulse Current Symbol			

Rev. 9, September 2024

Notes & Disclaimer

WOLFSPEED PROVIDES TECHNICAL AND RELIABILITY DATA, DESIGN RESOURCES, APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, WITH RESPECT THERETO, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, SUITABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

This document and the information contained herein are subject to change without notice. Any such change shall be evidenced by the publication of an updated version of this document by Wolfspeed. No communication from any employee or agent of Wolfspeed or any third party shall effect an amendment or modification of this document. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

The information contained in this document (excluding examples, as well as figures or values that are labeled as "typical") constitutes Wolfspeed's sole published specifications for the subject product. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for informational purposes only. Any examples provided herein have not been produced under conditions intended to replicate any specific end use. Product performance can and does vary due to a number of factors.

This product has not been designed or tested for use in, and is not intended for use in, any application in which failure of the product would reasonably be expected to cause death, personal injury, or property damage. For purposes of (but without limiting) the foregoing, this product is not designed, intended, or authorized for use as a critical component in equipment implanted into the human body, life-support machines, cardiac defibrillators, and similar emergency medical equipment; air traffic control systems; or equipment used in the planning, construction, maintenance, or operation of nuclear facilities. Notwithstanding any application-specific information, guidance, assistance, or support that Wolfspeed may provide, the buyer of this product is solely responsible for determining the suitability of this product for the buyer's purposes, including without limitation (1) selecting the appropriate Wolfspeed products for the buyer's application, (2) designing, validating, and testing the buyer's application, and (3) ensuring the buyer's application meets applicable standards and any other legal, regulatory, and safety-related requirements.

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Wolfspeed representative or from the Product Documentation sections of www.wolfspeed. com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact your Wolfspeed representative to ensure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

Contact info:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/power

© 2024 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: <u>https://www.wolfspeed.com/legal/patents</u>

The information in this document is subject to change without notice.

Rev. 9, September 2024